请输入您要查询的字词:

 

单词 RiemannLebesgueLemma
释义

Riemann-Lebesgue lemma


.Let f:[a,b] be a measurable functionMathworldPlanetmath. If f isL1 integrable, that is to say if the Lebesgue integralMathworldPlanetmath of |f| isfinite, then

abf(x)einx𝑑x0,asn±.

The above result, commonly known as the Riemann-Lebesgue lemma, is ofbasic importance in harmonic analysis. It is equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath to theassertion that the Fourier coefficients f^n of a periodic, integrablefunction f(x), tend to 0 as n±.

The proof can be organized into 3 steps.

Step 1. An elementary calculation shows that

Ieinx𝑑x0,asn±

for every interval I[a,b]. The propositionPlanetmathPlanetmath is therefore truefor all step functionsPlanetmathPlanetmath with support (http://planetmath.org/SupportOfFunction) in [a,b].

Step 2.By the monotone convergence theoremMathworldPlanetmath, the proposition is true for allpositive functions, integrable on [a,b].

Step 3. Let f be an arbitrary measurable function,integrable on [a,b]. The proposition is true for such a generalf, because one can always write

f=g-h,

where g and h are positive functions, integrable on[a,b].

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 21:16:41