请输入您要查询的字词:

 

单词 TaylorSeriesOfHyperbolicFunctions
释义

Taylor series of hyperbolic functions


The differentiation rules

ddxcoshx=sinhx,ddxsinhx=coshx

of the hyperbolic functionsDlmfMathworldPlanetmath imply

d2ndx2ncoshx=coshx,d2n+1dx2n+1coshx=sinhx  (n=0, 1, 2,).

In the origin  x=0,  all even (http://planetmath.org/Even)-order derivativesPlanetmathPlanetmath of the hyperbolic cosine have the value 1, but the odd (http://planetmath.org/Odd)-order derivatives vanish.  Thus the Taylor seriesMathworldPlanetmath expansion

f(x)=f(0)+f(0)1!x+f′′(0)2!x2+f′′′(0)3!x3+

of  f(x):=coshx  contains only the terms of even degree and writes simply

coshx= 1+x22!+x44!+=n=0x2n(2n)!.(1)

Similarly, one can derive for the hyperbolic sine the expansion

sinhx=x+x33!+x55!+=n=0x2n+1(2n+1)!.(2)

Both series converge (http://planetmath.org/AbsoluteConvergence) and the functionsMathworldPlanetmath for all real (and complex) values of x.  Comparing the expansions (1) and (2) with the corresponding ones of the circular functions cosine and sine, one sees easily that

coshx=cosix,sinhx=-isinix.

As for the Taylor expansion of the third important hyperbolic function tangens hyperbolica (http://planetmath.org/HyperbolicFunctions) tanh, it is obtained via division of the Taylor series (http://planetmath.org/TaylorSeriesViaDivision) (2) and (1); the begin of the quotient series is

tanhx=x-13x3+215x5-17315x7+-  (|x|<π2).(3)

The coefficients of this power seriesMathworldPlanetmath may be expressed with the Bernoulli numbersDlmfDlmfMathworldPlanetmathPlanetmath.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 15:05:56