请输入您要查询的字词:

 

单词 SchursInequality1
释义

Schur’s inequality


If a, b, and c are non-negative real numbers and k1 is real, then the following inequality holds:

ak(a-b)(a-c)+bk(b-c)(b-a)+ck(c-a)(c-b)0
Proof.

We can assume without loss of generality that cba via a permutationMathworldPlanetmath of the variables (as both sides are symmetricPlanetmathPlanetmath in those variables). Then collecting terms, we wish to show that

(a-b)(ak(a-c)-bk(b-c))+ck(a-c)(b-c)0

which is clearly true as every term on the left is positive.∎

There are a couple of special cases worth noting:

  • Taking k=1, we get the well-known

    a3+b3+c3+3abcab(a+b)+ac(a+c)+bc(b+c)
  • If c=0, we get (a-b)(ak+1-bk+1)0.

  • If b=c=0, we get ak+20.

  • If b=c, we get ak(a-c)20.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 9:51:27