请输入您要查询的字词:

 

单词 TensorProduct
释义

tensor product


Summary. The tensor productPlanetmathPlanetmathPlanetmath is a formal bilinearPlanetmathPlanetmath multiplicationof two modules or vector spacesMathworldPlanetmath. In essence, it permits us to replacebilinear maps from two such objects by an equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath linear map fromthe tensor product of the two objects. The origin of this operationMathworldPlanetmathlies in classic differential geometry and physics, which had need ofmultiply indexed geometric objects such as the first and secondfundamental formsMathworldPlanetmath, and the stress tensor — see Tensor Product (Classical) (http://planetmath.org/TensorProductClassical).

Definition (Standard). Let R be a commutative ring, and let A,B be R-modules. There exists an R-module AB, called thetensor product of A and B over R, together with a canonicalbilinear homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath

:A×BAB,

distinguished, up to isomorphismMathworldPlanetmathPlanetmath, by the following universalpropertyMathworldPlanetmath.Every bilinear R-module homomorphismMathworldPlanetmath

ϕ:A×BC,

lifts to a unique R-module homomorphism

ϕ~:ABC,

such that

ϕ(a,b)=ϕ~(ab)

for all aA,bB. Diagramatically:

\\xymatrix\\ar[dr](.55)ϕ\\ar[r]A×B&AB\\ar@-->[d](.4)!ϕ~&C

The tensor product AB can be constructed by taking the freeR-module generated by all formal symbols

ab,aA,bB,

and quotienting by the obvious bilinear relationsMathworldPlanetmathPlanetmath:

(a1+a2)b=a1b+a2b,a1,a2A,bB
a(b1+b2)=ab1+ab2,aA,b1,b2B
r(ab)=(ra)b=a(rb)aA,bB,rR

Note.

Basic . Let R be a commutative ring and L,M,N be R-modules, then, as modules, we have the following isomorphisms:

  1. 1.

    RMM,

  2. 2.

    MNNM,

  3. 3.

    (LM)NL(MN)

  4. 4.

    (LM)N(LN)(MN)

Definition (Categorical). Using the languagePlanetmathPlanetmath of categoriesMathworldPlanetmath, allof the above can be expressed quite simply by stating that for allR-modules M, the functorMathworldPlanetmath (-)M is left-adjoint to thefunctor Hom(M,-).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 4:05:54