请输入您要查询的字词:

 

单词 SolutionsOfXyYx
释义

solutions of xy=yx


The equation

xy=yx(1)

has trivial solutions on the line  y=x.  For other solutions one has the

Theorem.1. The only positive solutions of the equation (1) with  1<x<y  are in a parametric form

x=(1+u)1u,y=(1+u)1u+1(2)

where  u>0.
2. The only rational solutions of (1) are

x=(1+1n)n,y=(1+1n)n+1(3)

where  n=1, 2, 3,
3. Consequently, the only integer solution of (1) is

24= 16= 42.

Proof. 1. Let  (x,y)  be a solution of (1) with  1<x<y.  Set  y=x+δ (δ>0).  Now

xx+δ=(x+δ)x,

from which we obtain easily

x=(1+δx)xδ:=(1+u)1u,

where  u=δx.  Then

y=x+δ=x(1+δx)=(1+u)1u(1+u)=(1+u)1u+1.

2. The unit fractionsPlanetmathPlanetmathu=1n  yield from (2) rational solutions (3).Further, no irrational value of u cannot make both x and y of (2) rational, since otherwise the ratio 1+u of the latter numbers would be irrational (cf. rational and irrational).  Accordingly, for other rational solutions than (3), we must consider the values

u:=mn

with coprimeMathworldPlanetmath positive integers m,n where  m>1.  Make the antithesis that

x=(1+mn)nm.

Because the integers coprime with m form a group with respect to the multiplication modulo m (cf. prime residue classes), the congruenceMathworldPlanetmathPlanetmathPlanetmath

nz 1(modm)

has a solution z.  Thus we may write  nz=km+1  and rewrite the rational numberPlanetmathPlanetmath

[(1+mn)nm]z=(1+mn)nzm=(1+mn)km+1m=(1+mn)k(1+mn)1m.(4)

This product form tells that (1+mn)1m is rational.  But the number

(1+mn)1m=m+nnm

cannot be rational without the coprime integers m+n and n both being mth powers (http://planetmath.org/GeneralAssociativity).  If we had  n=vm,  then by Bernoulli inequalityMathworldPlanetmath,

(v+1)m>vm+mvn+m,

i.e. m+n could not be a mth power.  The contradictory situation means, by (4), that the antithesis is wrong.  Therefore, the numbers (3) give the only rational solutions of (1).

Note.  The value  n=2  in (3) produces  x=94,  y=278,  whence (1) reads

(94)278=(278)94.(5)

The truth of the equality (5) may also be checked by the calculation

(94)278=[(94)12]274=(32)274=[(32)3]94=(278)94.

References

  • 1 P. Hohler & P. Gebauer:  Kann man ohne Rechner entscheiden, ob eπ oder πe grösser ist? - Elemente der Mathematik 36 (1981).
  • 2 J. Sondow & D. Marques:  Algebraic and transcendental solutionsof some exponentialPlanetmathPlanetmath equations.  - Annales Mathematicae et Informaticae 37 (2010); available directly at http://arxiv.org/pdf/1108.6096.pdfarXiv.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 7:33:25