special elements in a relation algebra
Let be a relation algebra with operators of type . Then is called a
- •
function element if ,
- •
injective element if it is a function element such that ,
- •
surjective element if ,
- •
reflexive element if ,
- •
symmetric element if ,
- •
transitive element if ,
- •
subidentity if ,
- •
antisymmetric element if is a subidentity,
- •
equivalence element if it is symmetric
and transitive
(not necessarily reflexive
!),
- •
domain element if ,
- •
range element if ,
- •
ideal element if ,
- •
rectangle if for some , and
- •
square if it is a rectangle where (using the notations above).
These special elements are so named because they are the names of the corresponding binary relations on a set. The following table shows the correspondence.