请输入您要查询的字词:

 

单词 AnnihilatorOfVectorSubspace
释义

annihilator of vector subspace


If V is a vector spaceMathworldPlanetmath, and S is any subset of V,the annihilatorPlanetmathPlanetmathPlanetmathPlanetmath of S, denoted by S0,is the subspacePlanetmathPlanetmath of the dual spaceMathworldPlanetmathPlanetmath V*that kills every vector in S:

S0={ϕV*:ϕ(v)=0 for all vS}.

Similarly, if Λ is any subset of V*, the annihilated subspaceof Λ is

Λ-0={vV:ϕ(v)=0 for all ϕΛ}=ϕΛkerϕ.

(Note: this may not be the standard notation.)

1 Properties

Assume V is finite-dimensional.Let W and Φ denote subspaces of V and V*, respectively,and let ^ denote the natural isomorphism from V to its double dual V**.

  1. i.

    S0=(spanS)0

  2. ii.

    Λ-0=(spanΛ)-0

  3. iii.

    W00=W^

  4. iv.

    (Φ-0)0=Φ

  5. v.

    (W0)-0=W

  6. vi.

    dimW+dimW0=dimV (a dimension theorem)

  7. vii.

    dimΦ+dimΦ-0=dimV*=dimV

  8. viii.

    (W1+W2)0=W10W20, where W1+W2 denotesthe sum of two subspaces of V.

  9. ix.

    If T:VV is a linear operator, and W=kerT,then the image of the pullback T*:V*V* is W0.

References

  • 1 Friedberg, Insel, Spence. Linear Algebra. Prentice-Hall, 1997.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 19:29:44