请输入您要查询的字词:

 

单词 ApplicationOfCauchyCriterionForConvergence
释义

application of Cauchy criterion for convergence


Without using the methods of the entry determining series convergence, we show that the real-term series

n=01n!= 1+11!+12!+

is convergentMathworldPlanetmathPlanetmath by using Cauchy criterion for convergence, being in in equipped with the usual absolute valueMathworldPlanetmathPlanetmathPlanetmath |.| as http://planetmath.org/node/1604norm.

Let ε be an arbitrary positive number.  For any positive integer n, we have

1n!11222=12n-1,

whence we can as follows.

|1(n+1)!++1(n+p)!|=1(n+1)!++1(n+p)!
12n++12n+p-1
=12n(1+12++12p-1)
=12n1-(1/2)p1-1/2
<12n-1<ε

The last inequalityMathworldPlanetmath is true for all positive integers p, when  n> 1-lbε.  Thus the Cauchy criterion implies that the series converges.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 17:27:48