请输入您要查询的字词:

 

单词 213NaturalNumbers
释义

2.13 Natural numbers


We use the encode-decode method to characterize the path space of the natural numbersMathworldPlanetmath, which are also a positive type.In this case, rather than fixing one endpoint, we characterize the two-sided path space all at once.Thus, the codes for identities are a type family

𝖼𝗈𝖽𝖾:𝒰,

defined by double recursion over as follows:

𝖼𝗈𝖽𝖾(0,0):𝟏
𝖼𝗈𝖽𝖾(𝗌𝗎𝖼𝖼(m),0):𝟎
𝖼𝗈𝖽𝖾(0,𝗌𝗎𝖼𝖼(n)):𝟎
𝖼𝗈𝖽𝖾(𝗌𝗎𝖼𝖼(m),𝗌𝗎𝖼𝖼(n)):𝖼𝗈𝖽𝖾(m,n).

We also define by recursion a dependent function r:(n:)𝖼𝗈𝖽𝖾(n,n), with

r(0):
r(𝗌𝗎𝖼𝖼(n)):r(n).
Theorem 2.13.1.

For all m,n:N we have (m=n)code(m,n).

Proof.

We define

𝖾𝗇𝖼𝗈𝖽𝖾:m,n:(m=n)𝖼𝗈𝖽𝖾(m,n)

by transporting, 𝖾𝗇𝖼𝗈𝖽𝖾(m,n,p):𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝖼𝗈𝖽𝖾(m,)(p,r(m)).And we define

𝖽𝖾𝖼𝗈𝖽𝖾:m,n:𝖼𝗈𝖽𝖾(m,n)(m=n)

by double inductionMathworldPlanetmath on m,n.When m and n are both 0, we need a function 𝟏(0=0), which we define to send everything to 𝗋𝖾𝖿𝗅0.When m is a successorMathworldPlanetmathPlanetmathPlanetmath and n is 0 or vice versa, the domain 𝖼𝗈𝖽𝖾(m,n) is 𝟎, so the eliminator for 𝟎 suffices.And when both are successors, we can define 𝖽𝖾𝖼𝗈𝖽𝖾(𝗌𝗎𝖼𝖼(m),𝗌𝗎𝖼𝖼(n)) to be the composite

𝖼𝗈𝖽𝖾(𝗌𝗎𝖼𝖼(m),𝗌𝗎𝖼𝖼(n))𝖼𝗈𝖽𝖾(m,n)𝖽𝖾𝖼𝗈𝖽𝖾(m,n)(m=n)𝖺𝗉𝗌𝗎𝖼𝖼(𝗌𝗎𝖼𝖼(m)=𝗌𝗎𝖼𝖼(n)).

Next we show that 𝖾𝗇𝖼𝗈𝖽𝖾(m,n) and 𝖽𝖾𝖼𝗈𝖽𝖾(m,n) are quasi-inversesPlanetmathPlanetmath for all m,n.

On one hand, if we start with p:m=n, then by induction on p it suffices to show

𝖽𝖾𝖼𝗈𝖽𝖾(n,n,𝖾𝗇𝖼𝗈𝖽𝖾(n,n,𝗋𝖾𝖿𝗅n))=𝗋𝖾𝖿𝗅n.

But 𝖾𝗇𝖼𝗈𝖽𝖾(n,n,𝗋𝖾𝖿𝗅n)r(n), so it suffices to show that 𝖽𝖾𝖼𝗈𝖽𝖾(n,n,r(n))=𝗋𝖾𝖿𝗅n.We can prove this by induction on n.If n0, then 𝖽𝖾𝖼𝗈𝖽𝖾(0,0,r(0))=𝗋𝖾𝖿𝗅0 by definition of 𝖽𝖾𝖼𝗈𝖽𝖾.And in the case of a successor, by the inductive hypothesis we have 𝖽𝖾𝖼𝗈𝖽𝖾(n,n,r(n))=𝗋𝖾𝖿𝗅n, so it suffices to observe that 𝖺𝗉𝗌𝗎𝖼𝖼(𝗋𝖾𝖿𝗅n)𝗋𝖾𝖿𝗅𝗌𝗎𝖼𝖼(n).

On the other hand, if we start with c:𝖼𝗈𝖽𝖾(m,n), then we proceed by double induction on m and n.If both are 0, then 𝖽𝖾𝖼𝗈𝖽𝖾(0,0,c)𝗋𝖾𝖿𝗅0, while 𝖾𝗇𝖼𝗈𝖽𝖾(0,0,𝗋𝖾𝖿𝗅0)r(0).Thus, it suffices to recall from §2.8 (http://planetmath.org/28theunittype) that every inhabitant of 𝟏 is equal to .If m is 0 but n is a successor, or vice versa, then c:𝟎, so we are done.And in the case of two successors, we have

𝖾𝗇𝖼𝗈𝖽𝖾(𝗌𝗎𝖼𝖼(m),𝗌𝗎𝖼𝖼(n),𝖽𝖾𝖼𝗈𝖽𝖾(𝗌𝗎𝖼𝖼(m),𝗌𝗎𝖼𝖼(n),c))=𝖾𝗇𝖼𝗈𝖽𝖾(𝗌𝗎𝖼𝖼(m),𝗌𝗎𝖼𝖼(n),𝖺𝗉𝗌𝗎𝖼𝖼(𝖽𝖾𝖼𝗈𝖽𝖾(m,n,c)))=𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝖼𝗈𝖽𝖾(𝗌𝗎𝖼𝖼(m),)(𝖺𝗉𝗌𝗎𝖼𝖼(𝖽𝖾𝖼𝗈𝖽𝖾(m,n,c)),r(𝗌𝗎𝖼𝖼(m)))=𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝖼𝗈𝖽𝖾(𝗌𝗎𝖼𝖼(m),𝗌𝗎𝖼𝖼())(𝖽𝖾𝖼𝗈𝖽𝖾(m,n,c),r(𝗌𝗎𝖼𝖼(m)))=𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝖼𝗈𝖽𝖾(m,)(𝖽𝖾𝖼𝗈𝖽𝖾(m,n,c),r(m))=𝖾𝗇𝖼𝗈𝖽𝖾(m,n,𝖽𝖾𝖼𝗈𝖽𝖾(m,n,c))=c

using the inductive hypothesis.∎

In particular, we have

𝖾𝗇𝖼𝗈𝖽𝖾(𝗌𝗎𝖼𝖼(m),0):(𝗌𝗎𝖼𝖼(m)=0)𝟎(2.13.2)

which shows that “0 is not the successor of any natural number”.We also have the composite

(𝗌𝗎𝖼𝖼(m)=𝗌𝗎𝖼𝖼(n))𝖾𝗇𝖼𝗈𝖽𝖾𝖼𝗈𝖽𝖾(𝗌𝗎𝖼𝖼(m),𝗌𝗎𝖼𝖼(n))𝖼𝗈𝖽𝖾(m,n)𝖽𝖾𝖼𝗈𝖽𝖾(m=n)(2.13.3)

which shows that the function 𝗌𝗎𝖼𝖼 is injectivePlanetmathPlanetmath.

We will study more general positive types in http://planetmath.org/node/87578Chapter 5,http://planetmath.org/node/87579Chapter 6.In http://planetmath.org/node/87582Chapter 8, we will see that the same technique used here to characterize the identity types of coproducts and can also be used to calculate homotopy groups of spheres.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 12:44:31