请输入您要查询的字词:

 

单词 ApplyingGeneratingFunction
释义

applying generating function


The generating function of a functionMathworldPlanetmath sequence carries information common to the members of the sequence.  It may be utilised for deriving various properties, such as recurrence relations, orthogonality properties etc.  We take as example

e2zt-t2=n=0Hn(z)n!tn,(1)

the http://planetmath.org/node/11980generating function of the of Hermite polynomialsDlmfDlmfDlmfMathworldPlanetmath, and derive from it a recurrence relation and the orthonormality (http://planetmath.org/Orthonormal) formula.

1.  First we form the partial derivativeMathworldPlanetmath with respect to t of both of (1):

(2z-2t)e2zt-t2=m=1Hm(z)(m-1)!tm-1

Here we substitute (1) to the left hand side and rewrite the right hand side, getting

n=02zHn(z)n!tn-n=12Hn-1(z)(n-1)!tn=n=0Hn+1(z)n!tn,

where we can compare the coefficients of tn:

2zHnn!-2Hn-1(n-1)!=Hn+1n!  (n=1, 2,)

Thus we have gotten the recurrence relation

Hn+1(z)= 2zHn(z)-2nHn-1(z)  (n=1, 2,).(2)

Differentiating (1) partially with respect to z enables respectively to find a formula expressing the derivativeHn(z) via the themselves.

2.  We copy the equation (1) twice in the forms

n=0Hn(x)n!tn=e2xt-t2,n=0Hn(x)n!un=e2xu-u2,

multiply these with each other and by e-x2 and then integrate the obtained equation termwise over:

m=0n=0(-e-x2Hm(x)Hn(x)𝑑x)tmunm!n!=-e-x2e2xt-t2e2xu-u2𝑑x
=-e2x(t+u)-t2-u2-x2𝑑x
=-e-[(t+u)2-2(t+u)x+x2]+2tu𝑑x
=e2tu-e-[x-(t+u)]2𝑑x
=e2tu-e-y2𝑑y
=e2tuπ
=ȷ=0π2jtjujj!
=m=0n=0(πn!2nδmn)tmun

Thus we can infer that

-e-x2Hm(x)Hn(x)𝑑xm!n!=πn!2nδmn,

which implies the orthonormality relation

-e-x2Hm(x)Hn(x)𝑑x= 2mm!δmnπ.(3)

Cf. Hermite polynomials.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 6:09:42