examples of finite simple groups
This entry is under construction. If I take too long to finish it, nag me about it, or fill in the rest yourself.
All groups considered here are finite.
It is now widely believed that the classification of all finite simple groups up to isomorphism is finished. The proof runs for at least 10,000 printed pages, and as of the writing of this entry, has not yet been published in its entirety.
Abelian groups
- •
The first trivial example of simple groups
are the cyclic groups
of prime (http://planetmath.org/Prime) order. It is not difficult to see (say, by Cauchy’s theorem) that these are the only abelian
simple groups.
Alternating groups
- •
The alternating group
on symbols is the set of all even permutations
of , the symmetric group
on symbols. It is usually denoted by , or sometimes by . This is a normal subgroup
of , namely the kernel of the homomorphism
that sends every even permutation to and the odd permutations to . Because every permutation
is either even or odd, and there is a bijection between the two (multiply every even permutation by a transposition
), the index of in is . is simple because it only has three elements, and the simplicity of for can be proved by an elementary argument. The simplicity of the alternating groups is an important fact that Évariste Galois required in order to prove the insolubility by radicals of the general polynomial of degree higher than four. It is worth noting that some common sources of normal subgroups, namely centers and commutators
, are therefore uninteresting in for . Specifically, and has trivial center for .
Groups of Lie type
- •
Projective special linear groups
- •
Other groups of Lie type.
Sporadic groups
There are twenty-six sporadic groups (no more, no less!) that do not fit into any of the infinite sequences
of simple groups considered above. These often arise as the group of automorphisms of strongly regular graphs.
- •
Mathieu groups
.
- •
Janko groups
.
- •
The baby monster.
- •
The monster.