请输入您要查询的字词:

 

单词 AreaFunctions
释义

area functions


The most usual area functions:

  • The inverse function of the hyperbolic sineMathworldPlanetmath (in Latin sinus hyperbolicus) is arsinh (area sini hyperbolici):

    arsinhx:=ln(x+x2+1)
  • The inverse function of the hyperbolic cosine (in Latin cosinus hyperbolicus) is arcosh (area cosini hyperbolici):

    arcoshx:=ln(x+x2-1)

    It is defined for  x1.

  • The inverse function of the hyperbolic tangent (in Latin tangens hyperbolica) is artanh (area tangentis hyperbolicae):

    artanhx:=12ln1+x1-x

    It is defined for  -1<x<1.

  • The inverse function of the hyperbolic cotangent (in Latin cotangens hyperbolica) is arcoth (area cotangentis hyperbolicae):

    arcothx:=12lnx+1x-1

    It is defined for  |x|>1.

These four functionsMathworldPlanetmath are denoted also by sinh-1x, cosh-1x, tanh-1x and coth-1x.

Derivatives:

ddxarsinhx=1x2+1
ddxarcoshx=1x2-1
ddxartanhx=11-x2
ddxarcothx=11-x2

The functions  arsinh  and  artanh  have the Taylor seriesMathworldPlanetmath

arsinhx=x-12x33+1324x55-135246x77+-(|x|1),
artanhx=x+x33+x55+x77+(|x|<1).

Because the inverse tangentMathworldPlanetmath function (see the cyclometric functions) has the   arctanx=x-x33+x55-x77+-(|x|1),we see that

artanhx=1iarctanix;

similarly we get

arsinhx=1iarcsinix.

Some other formulae which may be obtained by means of the addition formulae of the hyperbolic functionsDlmfMathworld:

arsinhx±arsinhy=arsinh(xy2+1±yx2+1)
arcoshx±arcoshy=arcosh(xy±x2-1y2-1)
artanhx±artanhy=artanhx±y1±xy

The classic abbreviations “arsinh” and “arcosh” are explained as follows:  The unit hyperbola  x2-y2=1 (its right half) has the parametric

{x=coshA,y=sinhA;

here A means the area by the hyperbola and the straight line segments OP and OQ, where O is the origin, P is the point  (x,y)  of the hyperbola and Q is the point  (x,-y)  of the hyperbola.  Thus, conversely, A is the area having hyperbolic cosine equal to x (area cosini hyperbolici x), similarly A is the area having hyperbolic sine equal to y (area sini hyperbolici y).

Note.  In some countries the abbreviation “ar” in the symbols arsinh etc. is replaced by  “a”, “Ar”, “arc” or “arg”.

Titlearea functions
Canonical nameAreaFunctions
Date of creation2013-03-22 14:21:18
Last modified on2013-03-22 14:21:18
Ownerpahio (2872)
Last modified bypahio (2872)
Numerical id38
Authorpahio (2872)
Entry typeDefinition
Classificationmsc 26A09
Synonyminverse hyperbolic functionsDlmfMathworld
Related topicUnitHyperbola
Related topicCyclometricFunctions
Related topicHyperbolicAngle
Related topicIntegralTables
Related topicIntegrationOfSqrtx21
Related topicIntegralRelatedToArcSine
Related topicArcLengthOfParabola
Related topicListOfImproperIntegrals
Related topicInverseGudermannianFunction
Related topicEulersSubstitutionsForIntegration
Related topicArcoshCurve
Related topicEqualArcLength
Definesarsinh
Definesarcosh
Definesartanh
Definesarcoth
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 14:36:07