请输入您要查询的字词:

 

单词 barpartialOperator
释义

operator


Let Gn be a domain and letf:G be a C1function (continuously differentiable)(z1,,zn)f(z1,,zn) where zj=xj+iyj.We can think of G as a subset of 2n.We thereforehave the following partial derivativesMathworldPlanetmath for all 1jn,

fzj:=12(fxj-ifyj),
fz¯j:=12(fxj+ifyj).

Now let d be the standard exterior derivativeMathworldPlanetmath on2n and the dxj and dyj the standard basis of cotangentvectors. Then if we define

dzj:=dxj+idyj,
dz¯j:=dxj-idyj,

then we can define two new operators acting on C1 functions on Ggiving 1-forms by

f:=j=1nfzjdzj,
¯f:=j=1nfz¯jdz¯j.

By direct calculation we immediately see that

df=f+¯f.

Similarly we now define and ¯on arbitrary differential formω=α,βfα,βdzαdz¯β, where α and β range over all multi-indices withelements less then n, where if α=(α1,,αk)then dzα=dzα1dzαk,and fα,β is a C1, complex valued functionon G.

ω:=α,βfα,βzjdzjdzαdz¯β,
¯ω:=α,βfα,βz¯jdz¯jdzαdz¯β.

Again a direct calculation shows that d=+¯.

The Cauchy-Riemann equationsMathworldPlanetmath are then given by

¯f=0

That is, f is holomorphic if and only if it satisfies the above equations.Note that this only applies to functions. If ¯ω=0for a differential form, then the coefficients in the standard basisneed not be holomorphic.

Proposition.

¯ and satisfy the following properties

  • ¯ and are linear,

  • ¯2=¯¯=0 and 2==0,

  • ¯-¯=0.

While ¯u=0 is our condition for u to be aholomorphic function it turns out that it is more important to solve the inhomogeneous¯u=f equation, as that allows us to construct holomorphicobjects from nonholomorphic ones.

References

  • 1 Lars Hörmander.,North-Holland Publishing Company, New York, New York, 1973.
  • 2 Steven G. Krantz.,AMS Chelsea Publishing, Providence, Rhode Island, 1992.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 23:00:48