请输入您要查询的字词:

 

单词 BeltramiIdentity
释义

Beltrami identity


Let q(t) be a function , q˙=ddtq, and L=L(q,q˙,t). Begin with the time-relative Euler-Lagrange conditionPlanetmathPlanetmath

qL-ddt(q˙L)=0.(1)

If tL=0, then the Euler-Lagrange condition reduces to

L-q˙q˙L=C,(2)

which is the Beltrami identityMathworldPlanetmath. In the calculus of variationsMathworldPlanetmath, the ability to use the Beltrami identity can vastly simplify problems, and as it happens, many physical problems have tL=0.

In space-relative terms, with q:=ddxq, we have

qL-ddxqL=0.(3)

If xL=0, then the Euler-Lagrange condition reduces to

L-qqL=C.(4)

To derive the Beltrami identity, note that

ddt(q˙q˙L)=q¨q˙L+q˙ddt(q˙L)(5)

Multiplying (1) by q˙, we have

q˙qL-q˙ddt(q˙L)=0.(6)

Now, rearranging (5) and substituting in for the rightmost term of (6), we obtain

q˙qL+q¨q˙L-ddt(q˙q˙L)=0.(7)

Now consider the total derivative

ddtL(q,q˙,t)=q˙qL+q¨q˙L+tL.(8)

If tL=0, then we can substitute in the left-hand side of (8) for the leading portion of (7) to get

ddtL-ddt(q˙q˙L)=0.(9)

Integrating with respect to t, we arrive at

L-q˙q˙L=C,(10)

which is the Beltrami identity.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 2:02:46