topics on field extensions and Galois theory
Definitions
- 1.
extension field
- 2.
simple field extension
- 3.
degree (http://planetmath.org/Degree)
- 4.
field adjunction
- 5.
composite field
- 6.
finite extension
- 7.
algebraic extension
- 8.
algebraic closure
- 9.
abelian number field
- 10.
abelian extension
- 11.
biquadratic field
- 12.
biquadratic extension
- 13.
quadratic closure
- 14.
cyclic extension
- 15.
pure cubic field
- 16.
number field
- 17.
algebraically solvable
- 18.
norm and trace of algebraic number
- 19.
perfect field
- 20.
cyclotomic field
- 21.
cyclotomic extension
- 22.
-extension (http://planetmath.org/PExtension)
- 23.
radical
- 24.
radical extension
- 25.
solvable by radicals
- 26.
expressible
- 27.
normal extension
- 28.
normal closure
- 29.
separable extension
- 30.
separable closure
- 31.
splitting field
- 32.
fixed field of a set of automorphisms
- 33.
conjugate fields
- 34.
Galois extension
- 35.
Galois closure
- 36.
Galois group
- 37.
absolute Galois group
- 38.
Galois connection
- 39.
inverse Galois problem
- 40.
function field
- 41.
ray class field
Field theory in relation to Euclidean geometry
- 1.
Euclidean field
- 2.
constructible numbers
- 3.
motivation of definition of constructible numbers
- 4.
compass and straightedge construction
- 5.
theorem on constructible numbers
- 6.
theorem on constructible angles
- 7.
criterion for constructibility of regular polygon
- 8.
classical problems of constructibility
Galois theory
- 1.
fundamental theorem of Galois theory
- 2.
Galois group of the compositum of two Galois extensions
- 3.
Galois subfields
of real radical extensions (http://planetmath.org/GaloisSubfieldsOfRealRootExtensionsAreAtMostQuadratic)
- 4.
compositum of a Galois extension and another extension (http://planetmath.org/CompositumOfAGaloisExtensionAndAnotherExtensionIsGalois)
- 5.
criterion for solvability of a polynomial
by radicals (http://planetmath.org/GaloisCriterionForSolvabilityOfAPolynomialByRadicals)
- 6.
Hilbert Theorem 90
- 7.
Shafarevich’s theorem (finite solvable groups
as Galois groups)
- 8.
number fields with a particular finite abelian
Galois group (http://planetmath.org/GaloisGroupsOfFiniteAbelianExtensionsOfMathbbQ)
Applications of Galois theory
- 1.
Galois group of a biquadratic extension
- 2.
cubic formula
- 3.
quartic formula
- 4.
Galois group of a cubic polynomial
- 5.
Galois group of a quartic polynomial
- 6.
Galois-theoretic derivation of the cubic formula
- 7.
proof of fundamental theorem of algebra
- 8.
casus irreducibilis
- 9.
Cardano’s formulae
- 10.
a condition of algebraic extension
- 11.
primitive element theorem (Steinitz)