practical number
A positive integer is called a practical number if every positive integer is a sum of distinct positive divisors
of .
.An integer with primes and integers is practical if and only if and, for
where denotes the sum of the positive divisors of
Let be the counting function of practical numbers.Saias [2], using suitable sieve methods introduced by Tenenbaum[3, 4], proveda good estimate in terms ofa Chebishev-type theorem: for suitableconstants and ,
In [1] Melfi proved a Goldbach-type result showingthat every even positive integer is a sum of two practical numbers, and that there exist infinitely many triplets of practical numbers of the form .
References
- 1 G. Melfi, On two conjectures about practical numbers,J. Number Theory
56 (1996), 205–210.
- 2 E. Saias, Entiers àdiviseurs denses 1, J. Number Theory 62 (1997), 163–191.
- 3 G. Tenenbaum, Sur un problème de crible et ses applications,Ann. Sci.Éc. Norm. Sup. (4) 19 (1986), 1–30.
- 4 G. Tenenbaum, Sur un problème de crible et sesapplications, 2.Corrigendum et étude du graphe divisoriel, Ann. Sci. Éc. Norm. Sup.(4) 28 (1995), 115–127.