请输入您要查询的字词:

 

单词 BeurlingAhlforsQuasiconformalExtension
释义

Beurling-Ahlfors quasiconformal extension


Theorem (Beurling-Ahlfors).

There exists a quasiconformal mapping of the upper half plane to itself if and only if the boundary correspondence mapping μ is M-quasisymmetric (http://planetmath.org/QuasisymmetricMapping). Furthermore there exists an extensionPlanetmathPlanetmath of μ to a quasiconformal mapping of the upper half planes such that the maximal dilatation of the extension depends only on M and not on μ.

That is, the extension is K-quasiconformal (http://planetmath.org/QuasiconformalMapping) if and only if the boundary correspondence is M-quasisymmetric (http://planetmath.org/QuasisymmetricMapping) where K depends purely on M.

Supposing that we have the mapping ϕ:HH (where H is the upper half plane), then the mapping μ:,such that μ(x)=ϕ(x) where x, is the boundary correspondence of ϕ.

To prove the sufficiency of the above theorem Beurling and Ahlfors [2] define ϕ as follows. Given a μ that is a quasisymmetric mapping of the real line onto itself and fixes , we define a map ϕ(x,y)=u(x,y)+iu(x,y) where

u(x,y)=12y-yyμ(x+t)𝑑t,
v(x,y)=12y0y(μ(x+t)-μ(x-t))𝑑t.

Intuitively ϕ is a function which “smoothes” out any kinks in the function μ as we get further and further away from the real line. It therefore intuitively follows that ϕ has the worst (highest) dilatation near the x axis, which actually turns out to be true.

References

  • 1 L. V. Ahlfors. . Van Nostrand-Reinhold, Princeton, New Jersey, 1966
  • 2 A. Beurling, L. V. Ahlfors. . Acta Math., 96:125-142,1956.
  • 3 J. Lebl. . . Also available athttp://www.jirka.org/thesis.pdfhttp://www.jirka.org/thesis.pdf
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 1:32:57