limit for exp(z)For any complex number z, we havelimn→∞(1+zn+o(1n))n=expz,where exp denotes the exponential function.Proof:For α→0, we haveln(1+α)=∑k=1∞(-1)k-1⋅αkk=α+O(α2).Therefore(1+zn+o(1n))n=exp(nln(1+zn+o(1n)))=exp(n(zn+o(1n)+O(1n2)))=exp(z+o(1)+O(1n))→expz for n→∞. □