请输入您要查询的字词:

 

单词 BVFunction
释义

BV function


Functions of bounded variation, BV functions, are functions whose distributional derivativePlanetmathPlanetmath is a finite Radon measureMathworldPlanetmath. More precisely:

Definition 1 (functions of bounded variation).

Let ΩRn be an open set. We say that a function uL1(Ω)has bounded variationMathworldPlanetmath, and write uBV(Ω), if there exists a finite Radon vector measure DuM(Ω,Rn) such that

Ωu(x)divϕ(x)𝑑x=-Ωϕ(x),Du(x)

for every function ϕCc1(Ω,Rn). The measureMathworldPlanetmath Du,represents the distributional derivative of u since the above equality holds true for every ϕCc(Ω,Rn).

Notice that W1,1(Ω)BV(Ω). In fact if uW1,1(Ω) one can choose μ:=u (where is the Lebesgue measureMathworldPlanetmath on Ω).The equality udivϕ=-ϕ𝑑μ=-ϕuis nothing else than the definition of weak derivative, and hence holds true.One can easily find an example of a BV functions which is not W1,1.

An equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath definition can be given as follows.

Definition 2 (variation).

Given uL1(Ω) we define the variation of u in Ω as

V(u,Ω):=sup{Ωudivϕ:ϕ𝒞c1(Ω,n),ϕL(Ω)1}.

We define BV(Ω)={uL1(Ω):V(u,Ω)<+}.

.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 6:56:09