请输入您要查询的字词:

 

单词 TwoSeriesArisingFromTheAlternatingZetaFunction
释义

two series arising from the alternating zeta function


The terms of the series defining the alternating zeta function

η(s):=n=1(-1)n-1ns  (Res>0),

a.k.a. the Dirichlet eta functionMathworldPlanetmath, may be split into their real and imaginary partsDlmfMathworldPlanetmath:

1ns=e-iblnnna=cos(blnn)na-isin(blnn)na

Here,  s=a+ib  with real a and b.  It follows the equation

η(s)=-n=1(-1)nnacos(blnn)+in=1(-1)nnasin(blnn)(1)

containing two Dirichlet series.

The alternating zeta function and the Riemann zeta functionDlmfDlmfMathworldPlanetmath are connected by the relation

ζ(s)=η(s)1-21-s

(see the parent entry (http://planetmath.org/AnalyticContinuationOfRiemannZetaToCriticalStrip)).  The following conjecture concerning the above real part series and imaginary part series of (1) has been proved by Sondow [1] to be equivalent with the Riemann hypothesis.

Conjecture.  If the equations

n=1(-1)nnacos(blnn)= 0andn=1(-1)nnasin(blnn)= 0

are true for some pair of real numbers a and b, then

a= 1/2  or  a= 1.

References

  • 1 Jonathan Sondow: A simple counterexample to Havil’s “reformulation” of the Riemann hypothesis.  – Elemente der Mathematik 67 (2012) 61–67.  Also available http://arxiv.org/pdf/0706.2840v3.pdfhere.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 19:51:41