请输入您要查询的字词:

 

单词 CauchyIntegralFormulaInSeveralVariables
释义

Cauchy integral formula in several variables


Let D=D1××Dnn be a polydisc.

Theorem.

Let f be a function continuous in D¯ (the closure of D). Thenf isholomorphic (http://planetmath.org/HolomorphicFunctionsOfSeveralVariables) in Dif and only iffor all z=(z1,,zn)D we have

f(z1,,zn)=1(2πi)nD1Dnf(ζ1,,ζn)(ζ1-z1)(ζn-zn)𝑑ζ1𝑑ζn.

As in the case of one variable this theorem can be in fact used as adefinition of holomorphicity. Note that when n>1 then we are no longerintegrating over the boundary of the polydisc but over thedistinguished boundary, that is over D1××Dn.

References

  • 1 Lars Hörmander.,North-Holland Publishing Company, New York, New York, 1973.
  • 2 Steven G. Krantz.,AMS Chelsea Publishing, Providence, Rhode Island, 1992.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 21:04:18