请输入您要查询的字词:

 

单词 CauchyInvarianceRule
释义

Cauchy invariance rule


If  f(u,v,w),  u(x,y),  v(x,y),  w(x,y)  are differentiable functions and

f¯(x,y):=f(u(x,y),v(x,y),w(x,y))(1)

their composite functionMathworldPlanetmath, then according to the http://planetmath.org/node/2798chain ruleMathworldPlanetmath, we have the partial derivativesMathworldPlanetmath

{f¯x(x,y)=fu(u,v,w)ux(x,y)+fv(u,v,w)vx(x,y)+fw(u,v,w)wx(x,y),f¯y(x,y)=fu(u,v,w)uy(x,y)+fv(u,v,w)vy(x,y)+fw(u,v,w)wy(x,y).(2)

Multiplying these two equations by dx and dy, respectively, and then adding them, we obtain for the total differentialMathworldPlanetmath of the composite function the expression

df¯(x,y)=f¯x(x,y)dx+f¯y(x,y)dy
=(fuux+fvvx+fwwx)dx+(fuuy+fvvy+fwwy)dy
=fu[uxdx+uydy]+fv[vxdx+vydy]+fw[wxdx+wydy].

But the sums in the brackets the total differentials of the inner functions, whence we may write

df¯(x,y)=fu(u,v,w)du(x,y)+fv(u,v,w)dv(x,y)+fw(u,v,w)dw(x,y)(3)

where one must still substitute  u:=u(x,y),v:=v(x,y),w:=w(x,y).  Comparing (3) with the expression of the total differential

df(u,v,w)=fu(u,v,w)du+fv(u,v,w)dv+fw(u,v,w)dw(4)

of the outer function, we infer the following

Rule.  The total differential of the composite function (1) is directly obtained from the expression of the total differential of the outer function, when one replaces in it the variables u,v,w with the corresponding inner functions and the differentials du,dv,dw with the total differentials of those inner functions.

This rule of Cauchy is analogical for any number of inner functions and their variables.  The rule also offers the simplest way to form the partial derivatives of the composite function.

References

  • 1 Ernst Lindelöf: Differentiali- ja integralilaskuja sen sovellutukset II.  Mercatorin Kirjapaino Osakeyhtiö, Helsinki (1932).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 10:24:24