请输入您要查询的字词:

 

单词 CharacteristicPolynomialOfASymplecticMatrixIsAReciprocalPolynomial
释义

characteristic polynomial of a symplectic matrix is a reciprocal polynomial


Theorem 1.

The characteristic polynomialMathworldPlanetmathPlanetmath of a symplectic matrix is a reciprocal polynomial.

Proof.

Let A be the symplectic matrix, and letp(λ)=det(A-λI) beits characteristic polynomial. We wish to prove that

p(λ)=±λnp(1/λ).

By definition, AJAT=J where J is the matrix

J=(0I-I0).

Since A and J are symplectic matrices, their determinantsMathworldPlanetmath are 1, and

p(λ)=det(AJ-λJ)
=det(AJ-λAJAT)
=det(-λA)det(J)det(-1λJ+JAT)
=±λndet(A-1λI).

as claimed.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 1:28:59