请输入您要查询的字词:

 

单词 CharacterizationOfFreeSubmonoids
释义

characterization of free submonoids


Let A be an arbitrary set,let A be the free monoid on A,and let e be the identity elementMathworldPlanetmath (empty wordPlanetmathPlanetmath) of A.Let M be a submonoid of Aand let mgs(M) be its minimalPlanetmathPlanetmath generating setPlanetmathPlanetmath.

We recall the universal propertyMathworldPlanetmath of free monoids:for every mapping f:AM with M a monoid,there exists a unique morphismMathworldPlanetmathPlanetmath ϕ:AMsuch that ϕ(a)=f(a) for every aA.

Theorem 1

The following are equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath.

  1. 1.

    M is a free submonoid of A.

  2. 2.

    Any equation

    x1xn=y1ym,x1,,xn,y1,,ymmgs(M)(1)

    has only the trivial solutions n=m,x1=y1,,xn=yn.

  3. 3.

    For every wA,if p,qM exist such that pw,wqM,then wM.

From point 3 of Theorem 1 follows

Corollary 1

An intersectionMathworldPlanetmathPlanetmath of free submonoids of Ais a free submonoid of A.

As a consequence of Theorem 1,there is no Nielsen-Schreier theorem for monoids.In fact, consider A={a,b} and Y={a,ab,ba}A:then mgs(Y)=Y,but x1x2=y1y2 has a nontrivial solution over Y,namely, (ab)a=a(ba).

We now prove Theorem 1.

Point 2 implies point 1.Let f:mgs(M)B be a bijection.By the universal property of free monoids,there exists a unique morphism ϕ:BM that extends f-1;such a morphism is clearly surjectivePlanetmathPlanetmath.Moreover, any equation ϕ(b1bn)=ϕ(b1bm)translatesMathworldPlanetmath into an equation of the form (1),which by hypothesisMathworldPlanetmath has only trivial solutions:therefore n=m, bi=bi for all i, and ϕ is injectivePlanetmathPlanetmath.

Point 3 implies point 2.Suppose the existence of p,qM such that pw,wqMimplies wA is actually in M.Consider an equation of the form (1)which is a counterexample to the thesis,and such that the length of the compared words is minimal:we may suppose x1 is a prefix of y1,so that y1=x1w for some wA.Put p=x1,q=y2ym:then pw=y1 and wq=x2xn belong to M by construction.By hypothesis, this implies wM:then y1mgs(M) equals a productMathworldPlanetmathPlanetmathPlanetmath x1w with x1,wM—which,by definition of mgs(M),is only possible if w=e.Then x1=y1 and x2xn=y2ym:since we had chosen a counterexample of minimal length,n=m,x2=y2,,xn=yn.Then the original equation has only trivial solutions,and is not a counterexample after all.

Point 1 implies point 3.Let ϕ:BM be an isomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath of monoids.Then clearly mgs(M)ϕ(B);since removing m=ϕ(b) from mgs(M) removes ϕ(b) from M,the equality holds.Let wA and let p,qM satisfy pw,wqM:put x=ϕ-1(p), y=ϕ-1(q),r=ϕ-1(pw), s=ϕ-1(wq).Then ϕ(xs)=ϕ(ry)=pwqM, so xs=ry:this is an equality over B,and is satisfied only by r=xu, s=uy for some u.Then w=ϕ(u)M.

References

  • 1 M. Lothaire.Combinatorics on words.Cambridge University Press 1997.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 22:03:54