请输入您要查询的字词:

 

单词 BibliographyForOperatorAlgebrasInMathematicalPhysicsAndAQFTAToK
释义

bibliography for operator algebras in mathematical physics and AQFT-A to K


0.1 Bibliography for Operator Algebras in Mathematical Physics and Algebraic Quantum Field Theories (AQFT):

Alphabetical order: Letters from A to K

References

  • 1 Akutsu, Y. and Wadati, M. (1987).Knot invariants and critical statistical systems.Journal of the Physics Society of Japan,56, 839–842.
  • 2 Alexander, J. W. (1930).The combinatorial theory of complexes.Annals of Mathematics, (2) 31, 294–322.
  • 3 Andrews, G. E., Baxter, R. J. and Forrester, P.J. (1984).Eight vertex SOS model and generalizedRogers–Ramanujan type identitiesPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath. Journal of Statistical Physics, 35, 193–266.
  • 4 Aoi, H. and Yamanouchi, T. (in press).Construction of a canonical subfactor for an inclusion of factors with a common Cartan subalgebraMathworldPlanetmath.Hokkaido Mathematical Journal.
  • 5 Arcuri, R. C., Gomes, J. F. and D. I. Olive (1987). Conformal subalgebrasMathworldPlanetmathPlanetmathPlanetmathPlanetmath and symmetric spaces.Nuclear Physics B, 285, 327–339.
  • 6 Artin, E. (1947). Theory of braids. Annals of Mathematics,48 101–126.
  • 7 Asaeda, M. (2007). Galois groups and an obstruction to principal graphs of subfactors.International Journal of Mathematics, 18, 191–202.math.OA/0605318.
  • 8 Asaeda, M. and Haagerup, U. (1999). Exotic subfactors of finite depth with Jones indices(5+13)/2 and (5+17)/2. Communications in Mathematical Physics,202, 1–63.
  • 9 Asaeda, M. and Yasuda, S. (preprint 2007). On Haagerup’s list of potential principal graphs of subfactors.arXiv:0711.4144.
  • 10 Atiyah, M. (1967). K-theory. W. A. Benjamin Inc., New York.
  • 11 Atiyah, M. (1989). Topological quantum field theory. Publication Mathématiques IHES,68, 175–186.
  • 12 Aubert, P.-L. (1976). Théorie de Galois pour une W*-algèbre. Commentarii Mathematici Helvetici,39 (51), 411–433.
  • 13 Baez, J. C., Segal, I. E. and Zhou, Z. (1992). Introduction to algebraicMathworldPlanetmath and constructive quantumfield theory. Princeton University Press.
  • 14 Bakalov, B. and Kirillov, A. Jr. (2001). Lectures on tensor categories and modular functors.University Lecture Series 21, Amer. Math. Soc.
  • 15 Banica, T. (1997). Le groupe quantique compactPlanetmathPlanetmath libre U(n), Communications in Mathematical Physics, 190,143–172.
  • 16 Banica, T. (1998). Hopf algebrasMathworldPlanetmathPlanetmathPlanetmath and subfactors associated to vertex models.Journal of Functional Analysis, 159, 243–266.
  • 17 Banica, T. (1999). RepresentationsPlanetmathPlanetmath of compact quantum groups and subfactors.Journal für die Reine und Angewandte Mathematik, 509, 167–198.
  • 18 Banica, T. (1999). Fusion rules for representations of compact quantum groups.Expositiones Mathematicae, 17, 313–337.
  • 19 Banica, T. (1999). SymmetriesMathworldPlanetmathPlanetmathPlanetmath of a genericPlanetmathPlanetmathPlanetmath coaction. Mathematische Annalen, 314, 763–780.
  • 20 Banica, T. (2000). Compact Kac algebrasMathworldPlanetmathPlanetmath and commuting squares.Journal of Functional Analysis, 176, 80–99.
  • 21 Banica, T. (2001). Subfactors associated to compact Kac algebras.Integral Equations Operator Theory, 39, 1–14.
  • 22 Banica, T. (2002). Quantum groupsPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath and Fuss-Catalan algebras.Communications in Mathematical Physics, 226, 221–232
  • 23 Banica, T. (2005). The planar algebra of a coaction. Journal of Operator Theory 53, 119–158.
  • 24 Banica, T. (2005). Quantum automorphism groupsMathworldPlanetmath of homogeneousPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath graphs.Journal of Functional Analysis, 224, 243–280.
  • 25 Banica, T. (2005). Quantum automorphism groups of small metric spaces.Pacific Journal of Mathematics, 219, 27–51.
  • 26 Baxter, R. J. (1981).Rogers–Ramanujan identities in the Hard Hexagon model. Journal of Statistical Physics, 26,427–452.
  • 27 Baxter, R. J. (1982). Exactly solved models in statistical mechanics.Academic Press, New York.
  • 28 Baxter, R. J. (1988). The superintegrable chiral Potts model. Physics Letters A, 133, 185–189.
  • 29 Baxter, R. J. (1989). A simple solvablePlanetmathPlanetmath Z4(N) HamiltonianPlanetmathPlanetmath.Physics Letters A, 140, 155–157.
  • 30 Baxter, R. J. (1989). Superintegrable Chiral Potts model: thermodynamicproperties, an “inverseMathworldPlanetmathPlanetmathPlanetmathPlanetmath” model, and a simple associated Hamiltonian. Journal of StatisticalPhysics, 57, 1–39.
  • 31 Baxter, R. J., Kelland, S. B. and Wu, F. Y. (1976). Potts model or Whitney PolynomialMathworldPlanetmathPlanetmath.Journal of Physics. A. Mathematical and General,9, 397–406.
  • 32 Baxter, R. J., Perk, J. H. H. and Au-Yang, H. (1988). New solutions of the star-triangle relations for the chiral Potts model. Physics Letters A 128, 138–142.
  • 33 Baxter, R. J., Temperley, H. N. V. and Ashley, S. E. (1978).Triangular Potts model and its transition temperature and related models.Proceedings of the Royal Society of London A,358, 535–559.
  • 34 Behrend, R. E., Evans, D. E. (preprint 2003). Integrable Lattice Models for ConjugatePlanetmathPlanetmathPlanetmath An(1).hep-th/0309068.
  • 35 Behrend, R. E., Pearce, P. A., Petkova, V. B. and Zuber, J-B. (2000).Boundary conditions in rational conformal field theories.Nuclear Physics B, 579, 707–773.
  • 36 Belavin, A. A., Polyakov, A. M. and Zamolodchikov, A. B. (1980).InfiniteMathworldPlanetmath conformal symmetry in two-dimensional quantum field theory.Nuclear Physics B, 241, 333–380.
  • 37 Berezin, F. A. (1966). A method of second quantization. Academic Press, London/New York.
  • 38 Bertozzini, P., Conti, R. and Longo, R. (1998) Covariant sectors with infinite dimensionMathworldPlanetmathPlanetmathPlanetmath and positivity of the energy.Communications in Mathematical Physics, 193, 471–492.
  • 39 Bion-Nadal, J. (1992).Subfactor of the hyperfinite II1 factor withCoxeter graph E6 as invariantMathworldPlanetmath.Journal of Operator Theory, 28, 27–50.
  • 40 Birman, J. (1974). Braids, links and mapping class groupsPlanetmathPlanetmath.Annals of Mathematical Studies, 82.
  • 41 Birman, J. S. and Wenzl, H. (1989).Braids, link polynomials and a new algebra.Transactions of the American Mathematical Society,313, 249–273.
  • 42 Bisch, D. (1990). On the existence of centralPlanetmathPlanetmath sequencesMathworldPlanetmathPlanetmath in subfactors.Transactions of the American Mathematical Society,321, 117–128.
  • 43 Bisch, D. (1992). Entropy of groups and subfactors.Journal of Functional Analysis, 103,190–208.
  • 44 Bisch, D. (1994). A note on intermediate subfactors.Pacific Journal of Mathematics, 163,201–216.
  • 45 Bisch, D. (1994).On the structureMathworldPlanetmath of finite depth subfactors.in Algebraic methods in operator theory,(ed. R. Curto and P. E. T. Jörgensen),Birkhäuser, 175–194.
  • 46 Bisch, D. (1994).Central sequences in subfactors II.Proceedings of the American Mathematical Society,121, 725–731.
  • 47 Bisch, D. (1994).An example of an irreduciblePlanetmathPlanetmath subfactor of the hyperfiniteII1 factor with rational, non-integer index.Journal für die Reine und AngewandteMathematik, 455, 21–34.
  • 48 Bisch, D. (1997).Bimodules, higher relative commutants and the fusion algebraassociated to a subfactor.In Operator algebras and their applications.Fields Institute Communications,Vol. 13, American Math. Soc., 13–63.
  • 49 Bisch, D. (1998).Principal graphs of subfactors with small Jones index.Mathematische Annalen, 311, 223–231.
  • 50 Bisch, D. (2002).Subfactors and planar algebras.Proc. ICM-2002, Beijing, 2, 775–786.
  • 51 Bisch, D. and Haagerup, U. (1996).CompositionMathworldPlanetmathPlanetmath of subfactors: New examples of infinitedepth subfactors.Annales Scientifiques de l’École NormaleSuperieur, 29, 329–383.
  • 52 Bisch, D. and Jones, V. F. R. (1997).Algebras associated to intermediate subfactors.Inventiones Mathematicae,128, 89–157.
  • 53 Bisch, D. and Jones, V. F. R. (1997).A note on free composition of subfactors.In GeometryMathworldPlanetmath and Physics, (Aarhus 1995),Marcel Dekker, Lecture Notes in Pureand Applied Mathematics, Vol. 184, 339–361.
  • 54 Bisch, D. and Jones, V. F. R. (2000).Singly generated planar algebras of small dimension.Duke Mathematical Journal, 101, 41–75.
  • 55 Bisch, D. and Jones, V. F. R. (2003).Singly generated planar algebras of small dimension. IIAdvances in Mathematics, 175, 297–318.
  • 56 Bisch, D., Nicoara, R. and Popa, S. (2007).ContinuousPlanetmathPlanetmath families of hyperfinite subfactors withthe same standard invariant.International Journal of Mathematics, 18, 255–267.math.OA/0604460.
  • 57 Bisch, D. and Popa, S. (1999).Examples of subfactors with property T standard invariant.Geometric and Functional Analysis, 9, 215–225.
  • 58 Böckenhauer, J. (1996).An algebraic formulation of level one Wess-Zumino-Witten models.Reviews in Mathematical Physics, 8, 925–947.
  • 59 Böckenhauer, J. and Evans, D. E. (1998).Modular invariants, graphs and α-inductionMathworldPlanetmath fornets of subfactors I.Communications in Mathematical Physics, 197, 361–386.
  • 60 Böckenhauer, J. and Evans, D. E. (1999).Modular invariants, graphs and α-induction fornets of subfactors II.Communications in Mathematical Physics, 200, 57–103.
  • 61 Böckenhauer, J. and Evans, D. E. (1999).Modular invariants, graphs and α-induction fornets of subfactors III.Communications in Mathematical Physics, 205, 183–228.
  • 62 Böckenhauer, J. and Evans, D. E. (2000).Modular invariants from subfactors: Type I coupling matrices andintermediate subfactors.Communications in Mathematical Physics, 213, 267–289.
  • 63 Böckenhauer, J. and Evans, D. E. (2002).Modular invariants from subfactors.in Quantum Symmetries in Theoretical Physics and Mathematics(ed. R. Coquereaux et al.),Comtemp. Math. 294, Amer. Math. Soc., 95–131.math.OA/0006114.
  • 64 Böckenhauer, J. and Evans, D. E. (2001).Modular invariants and subfactors.in Mathematical Physics in Mathematics and Physics (ed. R. Longo),The Fields Institute Communications 30, Providence, Rhode Island:AMS Publications, 11–37.math.OA/0008056.
  • 65 Böckenhauer, J., Evans, D. E. and Kawahigashi, Y. (1999).On α-induction, chiral generatorsPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathand modular invariants for subfactors.Communications in Mathematical Physics, 208, 429–487.math.OA/9904109.
  • 66 Böckenhauer, J., Evans, D. E. and Kawahigashi, Y. (2000).Chiral structure of modular invariants for subfactors.Communications in Mathematical Physics, 210, 733–784.math.OA/9907149.
  • 67 Böckenhauer, J., Evans, D. E. and Kawahigashi, Y. (2001).Longo-Rehren subfactors arising from α-induction.Publications of the RIMS, Kyoto University, 37, 1–35.math.OA/0002154.
  • 68 de Boer, J. and Goeree, J. (1991).Markov traces and II1 factors inconformal field theory.Communications in Mathematical Physics,139, 267–304.
  • 69 Bongaarts, P. J. M. (1970).The electron-positron field, coupled to externalelectromagnetic potentials as an elementaryC*-algebra theory. Annals of Physics,56, 108–138.
  • 70 Bratteli, O. (1972).Inductive limits of finite dimensional C*-algebras.Transactions of the American Mathematical Society,171, 195–234.
  • 71 Brunetti, R., Guido, D. and Longo, R. (1993).Modular structure and duality in conformalquantum field theory.Communications in Mathematical Physics, 156, 201–219.
  • 72 Brunetti, R., Guido, D. and Longo, R. (1995).Group cohomologyMathworldPlanetmathPlanetmathPlanetmath, modular theory and space-time symmetries.Reviews in Mathematical Physics, 7 57–71.
  • 73 Buchholz, D., Doplicher, S., Longo, R. and Roberts, J. E. (1993).ExtensionsPlanetmathPlanetmathPlanetmath of automorphismsMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath and gauge symmetries.Communications in Mathematical Physics,155, 123–134.
  • 74 Buchholz, D., Mack, G. and Todorov, I. (1988).The current algebra on the circle as a germ of local fieldMathworldPlanetmath theories.Nuclear Physics B (Proc. Suppl.), B5, 20–56.
  • 75 Buchholz, D. and Schulz-Mirbach, H. (1990).Haag duality in conformal quantum field theoery,Reviews in Mathematical Physics, 2 105–125.
  • 76 Camp, W., and Nicoara, R. (preprint 2007).Subfactors and Hadamard matricesMathworldPlanetmath.arXiv:0704.1128.
  • 77 Cappelli, A., Itzykson, C. and Zuber, J.-B. (1987).The A-D-E classification of minimalPlanetmathPlanetmath andA1(1) conformal invariant theories.Communications in Mathematical Physics, 113, 1–26.
  • 78 Carpi, S. (1998).Absence of subsystems for the Haag-Kastler net generated bythe energy-momentum tensor in two-dimensional conformal field theory.Letters in Mathematical Physics, 45, 259–267.
  • 79 Carpi, S. (2003).The Virasoro algebra and sectors with infinite statistical dimension.Annales Henri Poincaré, 4, 601–611.math.OA/0203027.
  • 80 Carpi, S. (2004).On the representation theory of Virasoro nets.Communications in Mathematical Physics, 244, 261–284.math.OA/0306425.
  • 81 Carpi, S. (2005).Intersecting Jones projectionsPlanetmathPlanetmathPlanetmath.International Journal of Mathematics, 16, 687–691.math.OA/0412457.
  • 82 Carpi, S. and Conti, R. (2001).Classification of subsystems for local nets with trivialsuperselection structure.Communications in Mathematical Physics, 217, 89–106.
  • 83 Carpi, S. and Conti, R. (2005).Classification of subsystems for graded-local nets with trivialsuperselection structure.Communications in Mathematical Physics.253, 423–449.math.OA/0312033.
  • 84 Carpi, S., Kawahigashi, Y. and Longo, R. (in press).Structure and classification of superconformal nets.Annales Henri Poincaré.arXiv:0705.3609.
  • 85 Carpi, S. and Weiner, M. (2005).On the uniqueness of diffeomorphismMathworldPlanetmath symmetry in Conformal Field Theory.Communications in Mathematical Physics,258, 203–221.math.OA/0407190.
  • 86 Ceccherini, T. (1996).Approximately inner and centrally free commuting squaresof type II1 factors and their classification.Journal of Functioanl Analysis, 142, 296–336.
  • 87 Chen, J. (1993).The Connes invariant χ(M) and cohomology of groups.Ph. D. dissertation at University of California, Berkeley.
  • 88 Choda, M. (1989).Index for factors generated by Jones’ two sidedsequence of projections.Pacific Journal of Mathematics, 139, 1–16.
  • 89 Choda, M. (1991).Entropy for *-endomorphisms and relative entropyfor subalgebras. Journal of Operator Theory,25, 125–140.
  • 90 Choda, M. (1992).Entropy for canonical shift.Transactions of the American Mathematical Society,334, 827–849.
  • 91 Choda, M. (1993).Duality for finite bipartite graphsMathworldPlanetmath(with applications to II1 factors).Pacific Journal of Mathematics, 158, 49–65.
  • 92 Choda, M. (1994).Square roots of the canonical shifts.Journal of Operator Theory, 31, 145–163.
  • 93 Choda, M. (1994).Extension algebras via *-endomorphisms.in Subfactors —Proceedings of the Taniguchi Symposium, Katata —,(ed. H. Araki, et al.),World Scientific, 105–128.
  • 94 Choda, M. and Hiai, F. (1991).Entropy for canonical shifts. II.Publications of the RIMS, Kyoto University,27, 461–489.
  • 95 Choda, M. and Kosaki, H. (1994).Strongly outer actions for an inclusion of factors.Journal of Functional Analysis, 122,315–332.
  • 96 Christensen, E. (1979).Subalgebras of a finite algebra.Mathematische Annalen, 243, 17–29.
  • 97 Combes, F. (1968).Poids sur une C*-algèbre.Journal de Mathématiques Pures etAppliquées, 47, 57–100.
  • 98 Connes, A. (1973).Une classification des facteurs de type III.Annales Scientifiques de l’École Normale Supérieure,6, 133–252.
  • 99 Connes, A. (1975).Outer conjugacy classesMathworldPlanetmath of automorphisms of factors.Annales Scientifiques de l’École Normale Supérieure,8, 383–419.
  • 100 Connes, A. (1975).Hyperfinite factors of type III-0 and Krieger’s factors.Journal of Functional Analysis,18, 318–327.
  • 101 Connes, A. (1975).Sur la classification des facteurs de type II.Comptes Rendus de l’Academie des Sciences,Série I, Mathématiques, 281, 13–15.
  • 102 Connes, A. (1975).A factor not antiisomorphic to itself.Annals of Mathematics, 101, 536–554.
  • 103 Connes, A. (1976).Classification of injectivePlanetmathPlanetmath factors.Annals of Mathematics,104, 73–115.
  • 104 Connes, A. (1976).Outer conjugacy of automorphisms of factors.Symposia Mathematica, XX, 149–160.
  • 105 Connes, A. (1976).On the classification of von NeumannalgebrasMathworldPlanetmathPlanetmath and their automorphisms.Symposia Mathematica, XX, 435–478.
  • 106 Connes, A. (1977).Periodic automorphisms of the hyperfinite factor of type II1.Acta Scientiarum Mathematicarum,39, 39–66.
  • 107 Connes, A. (1978).On the cohomologyMathworldPlanetmath of operator algebras.Journal of Functional Analysis,28, 248–253.
  • 108 Connes, A. (1979).Sur la théorie non commutativePlanetmathPlanetmathPlanetmath de l’integration.Springer Lecture Notes in Math.,725, 19–143.
  • 109 Connes, A. (1980).C*-algebres et geomètrie différentielle.Comptes Rendus de l’Academie des Sciences,Série I, Mathématiques,559–604.
  • 110 Connes, A. (1980).Spatial theory of von Neumann algebras.Journal of Functional Analysis, 35(1980), 153–164.
  • 111 Connes, A. (1981).An analogue of the Thom isomorphism for crossedproducts of a C*-algebra by an action of𝐑. Advances in Mathematics,39, 311–355.
  • 112 Connes, A. (1982).Foliations and Operator Algebras.Proceedings of Symposia in Pure Mathematics.ed. R. V. Kadison,38, 521–628.
  • 113 Connes, A. (1982).Classification des facteurs.Proceedings of the Symposia in Pure Mathematics (II),38, 43–109.
  • 114 Connes, A. (1985).Non-commutative differential geometry I–II.Publication Mathématiques IHES,62, 41–144.
  • 115 Connes, A. (1985).Factors of type III-1, property Lλ andclosureMathworldPlanetmathPlanetmathPlanetmath of inner automorphisms.Journal of Operator Theory, 14, 189–211.
  • 116 Connes, A. (1985).Non Commutative Differential Geometry,Chapter II: De Rham homologyMathworldPlanetmathPlanetmath and non commutativealgebra. Publication Mathématiques IHES,62, 257–360.
  • 117 Connes, A. (1994).Noncommutative geometryPlanetmathPlanetmath.Academic Press.
  • 118 Connes, A. and Evans, D. E. (1989).EmbeddingsMathworldPlanetmathPlanetmath of U(1)-current algebras innon-commutative algebras of classical statisticalmechanics. Communications in MathematicalPhysics, 121, 507–525.
  • 119 Connes, A. and Higson, N. (1990).Déformations, morphismes asymptotiques etK-théorie bivariante.Comptes Rendus de l’ Academie des Sciences,Série I, Mathématiques,311, 101–106.
  • 120 Connes, A. and Karoubi, M. (1988).Caractere multiplicatif d’un module de Fredholm.K-theory, 2 431–463.
  • 121 Connes, A. and Krieger, W. (1977).Measure space automorphism groups, the normalizerMathworldPlanetmath of theirfull groups, and approximate finiteness.Journal of Functional Analysis, 24, 336–352.
  • 122 Connes, A. and Rieffel, M. (1985).Yang-Mills for non-commutative tori.Contemporary Mathematics,62, 237–265.
  • 123 Connes, A. and Skandalis, G. (1984).The longitudinal index theorem for foliations.Publications of the RIMS, Kyoto University,20, 1139–1183.
  • 124 Connes, A. and Störmer, E. (1975).Entropy for automorphisms of II1 von Neumann algebras.Acta Mathematica, 134, 289–306.
  • 125 Connes, A. and Takesaki, M. (1977).The flow of weights on factors of type III.Tohoku Mathematical Journal, 29, 73–555.
  • 126 Conti, R., Doplicher, S., and Roberts, J. E. (2001).Superselection theory for subsystems.Communications in Mathematical Physics,218, 263–281.
  • 127 Conti, R. and Pinzari, C. (1996).Remarks on the index of endomorphisms of Cuntz algebras.Journal of Functional Analysis, 142, 369–405.
  • 128 Coquereaux, R. (2005)The A2 Ocneanu quantum groupoidPlanetmathPlanetmath.in Algebraic structures and their representations,Contemporary Mathematics, 376, 227–247.hep-th/0311151.
  • 129 Coquereaux, R. and Schieber, G. (2002).Twisted partition functionsPlanetmathPlanetmath for ADE boundary conformalfield theories and Ocneanu algebras of quantum symmetries.Journal of Geometry and Physics, 42, 216–258.
  • 130 Coquereaux, R. and Schieber, G. (2003).Determination of quantum symmetries for higher ADE systemsfrom the modular T matrix.Journal of Mathematical Physics, 44, 3809–3837.hep-th/0203242. bibitemCnCuntz, J. (1977).Simple C*-algebras generated by isometriesMathworldPlanetmathPlanetmath.Communications in Mathematical Physics,57, 173–185.
  • 131 Cuntz, J. (1981).K-theory for certain C*-algebras.Annals of Mathematics,113, 181–197.
  • 132 Cuntz, J. (1984).K-theory and C*-algebras.Lecture Notes in Mathematics, Springer-Verlag,1046.
  • 133 Cuntz, J. (1981).A class of C*-algebras and topological Markov chains II.Reducible Markov chains and the Ext functorMathworldPlanetmath forC*-algebras.Inventiones Mathematica,63, 25–40.
  • 134 Cuntz, J. and Krieger, W. (1980).A class of C*-algebras and topological Markov chains.Inventiones Mathematicae,56, 251–268.
  • 135 Cvetković, D., Doob, M. and Gutman, I. (1982).On graphs whose spectral radius does not exceed (2+5)1/2.Ars Combinatoria, 14, 225–239.
  • 136 D’Antoni, C., Fredenhagen, K. and Köster, S. (preprint 2003).Implementation of conformal covariance by diffeomorphism symmetry.math-ph/0312017.
  • 137 D’Antoni, C., Longo, R. and Radulescu, F. (2001).Conformal nets, maximal temperature and models from free probability.Journal of Operator Theory, 45, 195–208.
  • 138 Date, E., Jimbo, M., Kuniba, A., Miwa, T. and Okado, M. (1988).Exactly solvable SOS models II:Proof of the star-triangle relation and combinatorial identities.Advanced Studies in Pure Mathematics, 16, 17–122.
  • 139 Date, E., Jimbo, M., Miwa, T. and Okado, M. (1987).Solvable lattice models.Theta functions — Bowdoin 1987, Part 1,Proceedings of Symposia in PureMathematics Vol. 49, American Mathematical Society,Providence, R.I., pp. 295–332.
  • 140 David, M. C. (1996).Paragroupe d’Adrian Ocneanu et algèbre de Kac.Pacific Journal of Mathematics, 172, 331–363.
  • 141 Degiovanni, P. (1990).𝐙/N𝐙 conformal field theories.Communications in Mathematical Physics,127, 71–99.
  • 142 Degiovanni, P. (1992).Moore and Seiberg’s equations and 3D toplogical field theory.145, 459–505.
  • 143 Di Francesco, P. (1992).Integrable lattice models, graphs, and modularinvariant conformal field theories.International Journal of Modern Physics A,7, 407–500.
  • 144 Di Francesco, P., Mathieu, P. and Sénéchal, D. (1996).Conformal Field Theory.Springer-Verlag, New York.
  • 145 Di Francesco, P., Saleur, H. and Zuber, J.-B. (1987).Modular invariance in non-minimal two-dimensional conformal fieldtheories.Nuclear Physics, B285, 454–480.
  • 146 Di Francesco, P. and Zuber, J.-B. (1990).SU(N) latticeMathworldPlanetmathPlanetmath integrable models associated with graphs.Nuclear Physics B, 338, 602–646.
  • 147 Di Francesco, P. and Zuber, J.-B. (1990).SU(N) lattice integrable models and modular invariance.in Recent DevelopmentsMathworldPlanetmath in Conformal Field Theories, Trieste, 1989,World Scientific, 179–215.
  • 148 Dijkgraaf, R., Pasquier, V. and Roche, Ph. (1990).Quasi Hopf algebras, group cohomology and orbifoldMathworldPlanetmath models.Nuclear Physics B(Proc. Suppl.), 18, 60–72.
  • 149 Dijkgraaf, R., Pasquier, V. and Roche, Ph. (1991).Quasi-quantum groups related to orbifold models.Proceedings of the International Colloquium onModern Quantum Field Theory, World Scientific,Singapore, 375–383.
  • 150 Dijkgraaf, R., Vafa, C., Verlinde, E. and Verlinde,H. (1989). The operator algebra of orbifold models.Communications in Mathematical Physics, 123, 485–526.
  • 151 Dijkgraaf, R. and Witten, E. (1990).Topological gauge theories and group cohomology.Communications in Mathematical Physics, 129, 393–429.
  • 152 Dixmier, J. (1964).Les C*-algebras et leurs représentations.Gauthier-Villars.
  • 153 Dixmier, J. (1967).On some C*-algebras considered by Glimm.Journal of Functional Analysis, 1, 182–203.
  • 154 Dixmier, J. (1969).Les algèbres d’opérateurs dans l’espaceHilbertien. (Algèbres de von Neumann.) 2nd ed.Gauthier Villars, Paris.
  • 155 Dixmier, J. (1981).Von Neumann Algebras.North-Holland.
  • 156 Dixmier, J. and C. Lance (1969).Deux nouveaux facteurs de type II.Inventiones Mathematicae,7, 226–234.
  • 157 Dixon, L., Harvey, J. A., Vafa, C. and Witten, E.(1985). Strings on orbifolds.Nuclear Physics B, 261,678–686.
  • 158 Dixon, L., Harvey, J. A., Vafa, C. and Witten, E. (1986).Strings on orbifolds.Nuclear Physics B, 274, 285–314.
  • 159 Dong, C. and Xu, F. (2006).Conformal nets associated with lattices and their orbifolds.Advances in Mathematics, 206, 279–306.math.OA/0411499.
  • 160 Doplicher, S., Haag, R. and Roberts, J. E. (1969).Fields, observables and gauge transformations II.Communications in Mathematical Physics,15, 173–200.
  • 161 Doplicher, S., Haag, R. and Roberts, J. E. (1971, 74).Local obsevables and particle statistics, I,II.Communications in Mathematical Physics,23, 199–230 and 35, 49–85.
  • 162 Doplicher, S. and Longo, R. (1984).Standard and split inclusions of von Neumann algebras.Inventiones Mathematicae, 75, 493–536.bibitemDPDoplicher, S. and , Piacitelli, G. (preprint 2002).Any compact group is a gauge group.hep-th/0204230.
  • 163 Doplicher, S., Pinzari, C. and Roberts, J. E. (2001).An algebraic duality theory for multiplicative unitariesMathworldPlanetmathPlanetmath.International Journal of Mathematics, 12, 415–459.
  • 164 Doplicher, S. and Roberts, J. E. (1989).Endomorphisms of C*-algebras, cross productsMathworldPlanetmathand duality for compact groups.Annals of Mathematics, 130, 75–119.
  • 165 Doplicher, S. and Roberts, J. E. (1989).A new duality theory for compact groups.Inventiones Mathematica, 98, 157–218.
  • 166 Drinfeld, V. G. (1986). Quantum groups.Proc. ICM-86, Berkeley, 798–820.
  • 167 Dunford, N. and Schwartz, J. T. (1958).Linear OperatorsMathworldPlanetmath Volume I. Interscience.
  • 168 Durhuus, B., Jakobsen, H. P. and Nest, R. (1993).Topological quantum field theories from generalized 6j-symbols.Reviews in Mathematical Physics, 5, 1–67.
  • 169 Elliott, G. A. (1976).On the classification of inductive limits ofsequences of semisimplePlanetmathPlanetmathPlanetmathPlanetmathPlanetmath finite-dimensional algebras.Journal of Algebra, 38, 29–44.
  • 170 Enock, M. (1998).Inclusions irréducibles de facteurs et unitaires multiplicatifs, II.Journal of Functional Analysis, 154, 67–109.
  • 171 Enock, M. (1999).Sous-facteurs intermédiaires et groupes quantiques mesurés.Journal of Operator Theory, 42, 305–330.
  • 172 Enock, M. (2000).Inclusions of von Neumann algebras and quantum groupoids, II.Journal of Functional Analysis, 178, 156–225.
  • 173 Enock, M. and Nest, R. (1996).Irreducible inclusions of factors multiplicative unitaries,and Kac algebras.Journal of Functional Analysis, 137, 466–543.
  • 174 Enock, M. and Vallin, J.-M. (2000).Inclusions of von Neumann algebras and quantum groupoids.Journal of Functional Analysis, 172, 249–300.
  • 175 Erlijman, J. (1998).New braided subfactors from braid groupMathworldPlanetmath representations.Transactions of the American Mathematical Society,350, 185–211.
  • 176 Erlijman, J. (2000).Two-sided braid subfactors and asymptotic inclusions.Pacific Journal of Mathematics, 193, 57–78.
  • 177 Erlijman, J. (2001).Multi-sided braid subfactors.Canadian Journal of Mathematics, 53, 546–564.
  • 178 Evans, D.E. (1984).The C*-algebras of topological Markov chains.Tokyo Metropolitan University Lecture Notes.
  • 179 Evans, D. E. (1985).The C*-algebras of the two-dimensional Ising model.Springer Lecture Notes in Mathematics, 1136, 162–176.
  • 180 Evans, D. E. (1985).Quasi-product states on C*-algebras.Operator algebras and their connections withtopologyMathworldPlanetmath and ergodic theory,Springer Lecture Notes in Mathematics, 1132, 129–151.
  • 181 Evans, D. E. (1990).C*-algebraic methods instatistical mechanics and field theory.International Journal of Modern Physics B,4, 1069–1118.
  • 182 Evans, D. E. (2002).Fusion rules of modular invariants.Reviews in Mathematical Physics, 14, 709–731.math.OA/0204278
  • 183 Evans, D. E. (preprint 2002).Critical phenomena, modular invariants and operator algebras.math.OA/0204281.
  • 184 Evans, D. E. and Gould, J. D. (1989).Dimension groups, embeddings and presentationsMathworldPlanetmathPlanetmath ofAF algebras associated to solvable lattice models.Modern Physics Letters A, 20, 1883–1890.
  • 185 Evans, D. E. and Gould, J. D. (1994).Dimension groups and embeddings of graph algebras.International Journal of Mathematics,5, 291–327.
  • 186 Evans, D. E. and Gould, J. D. (1994).Presentations of AF algebras associated to T-graphs.Publications of the RIMS, Kyoto University, 30, 767–798.
  • 187 Evans, D. E. and Kawahigashi, Y. (1993).Subfactors and conformal field theory.in “Quantum and non-commutative analysis”,341–369, Kluwer Academic.
  • 188 Evans, D. E. and Kawahigashi, Y. (1994).Orbifold subfactors from Hecke algebrasMathworldPlanetmath.Communications in Mathematical Physics,165, 445–484.
  • 189 Evans, D. E. and Kawahigashi, Y. (1994).The E7 commuting squares produceD10 as principal graph.Publications of the RIMS, Kyoto University,30, 151–166.
  • 190 Evans, D. E. and Kawahigashi, Y. (1995).On Ocneanu’s theory of asymptotic inclusions forsubfactors, topological quantum field theoriesand quantum doubles.International Journal of Mathematics,6, 205–228.
  • 191 Evans, D. E. and Kawahigashi, Y. (1995).From subfactors to 3-dimensional topologicalquantum field theories and back — a detailedaccount of Ocneanu’s theory —.International Journal of Mathematics,6, 537–558.
  • 192 Evans, D. E. and Kawahigashi, Y. (1998).Orbifold subfactors from Hecke algebras II—Quantum doubles and braiding—.Communications in Mathematical Physics,196, 331–361.
  • 193 Evans, D. E. and Kawahigashi, Y. (1998).Quantum symmetries on operator algebras.Oxford University Press.
  • 194 Evans, D. E. and Pinto, P. R. (2003).Subfactor realisation of modular invariants.Communications in Mathematical Physics,237, 309–363.math.OA/0309174.
  • 195 Evans, D. E. and Pinto, P. R. (preprint 2003).Modular invariants and their fusion rules.math.OA/0309175
  • 196 Evans, D. E. and Pinto, P. R. (preprint 2004).Modular invariants and the double of the Haagerup subfactor.
  • 197 Fack, T. and Marèchal, O (1979).Sur la classification des symètries desC*-algébres UHF.Canadian Journal of Mathematics,31, 496–523.
  • 198 Fack, T. and Marèchal, O. (1981).Sur la classification des automorphismspèriodiques desC*-algébres UHF.Journal of Functional Analysis,40, 267–301.
  • 199 Felder, F., Fröhlich, J. and Keller, G. (1990).On the structure of unitary conformal field theory.II. Representation-theoretic approach.Communications in Mathematical Physics,130, 1–49.
  • 200 Fendley, P. (1989).New exactly solvable orbifold models.Journal of Physics A, 22, 4633–4642.
  • 201 Fendley, P. and Ginsparg, P. (1989).Non-critical orbifolds.Nuclear Physics B,324, 549–580.
  • 202 Fenn, R. and Rourke, C. (1979).On Kirby’s calculus of links.Topology, 18, 1–15.
  • 203 Fidaleo, F. and Isola, T. (preprint 1996).The canonical endomorphism for infinite index inclusions.
  • 204 Fredenhagen, K. (1994).Superselection sectors with infinite statistical dimension.in Subfactors —Proceedings of the Taniguchi Symposium, Katata —,(ed. H. Araki, et al.),World Scientific, 242–258.
  • 205 Fredenhagen, K. and Jörß, M. (1996).Conformal Haag-Kastler nets, pointlike localized fields andthe existence of operator product expansion.Communications in Mathematical Physics,176 (1996) 541–554.
  • 206 Fredenhagen, K., Rehren, K.-H. and Schroer, B. (1989).Superselection sectors with braid group statisticsand exchange algebras.Communications in Mathematical Physics,125, 201–226.
  • 207 Fredenhagen, K., Rehren, K.-H. and Schroer, B. (1992).Superselection sectors with braid group statisticsand exchange algebras II.Reviews in Mathematical Physics (special issue), 113–157.
  • 208 Freyd, P., Yetter, D.; Hoste, J.; Lickorish, W.,Millet, K.; and Ocneanu, A. (1985).A new polynomial invariant of knots and links.Bulletin of the American Mathematical Society,12, 239–246.
  • 209 Friedan, D., Qui, Z. and Shenker, S. (1984).Conformal invariance, unitarity and criticalexponents in two dimensions.Physical Review Letters,52, 1575–1578.
  • 210 Fröhlich, J. (1987).Statistics of fields, the Yang–Baxter equation andthe theroy of knots and links.Proceedings of Cargèse, ed. G.’t Hooft et al.
  • 211 Fröhlich, J. (1988).The Statistics of Fields, the Yang–Baxter Equation,and the Theory of Knots and Links.In “Non-Pert. Quantum FieldTheory”, G. ’tHooft et al. (ed.), Plenum.(Cargese Lectures, 1987).
  • 212 Fröhlich, J. and Gabbiani, F. (1990).Braid statistics in local quantum theoryPlanetmathPlanetmath.Reviews in Mathematical Physics, 2,251–353.
  • 213 Fröhlich, J. and Kerler, T. (1993).Quantum groups, quantum categoriesPlanetmathPlanetmathPlanetmath and quantumfield theory. Lecture Notes in Mathematics,1542, Springer.
  • 214 Fröhlich, J. and King, C. (1989).The Chern–Simons theory and knot polynomials.Communications in Mathematical Physics, 126, 167–199.
  • 215 Fröhlich, J. and King, C. (1989).Two-dimensional conformal field theory andthree-dimensional topology.International Journal of Modern Physics A,4, 5321–5399.
  • 216 Fröhlich, J. and Marchetti, P.-A. (1988).Quantum field theory of anyons.Letters in Mathematical Physics, 16,347–358.
  • 217 Fröhlich, J. and Marchetti, P.-A. (1989).Quantum field theories of vortices and anyons.Communications in Mathematical Physics, 121, 177–223.
  • 218 Fuchs, J. (1992).Affine Lie algebras and quantum groups.Cambridge University Press.
  • 219 Fuchs, J., Runkel, I. and Schweigert, C. (2002).TFT construction of RCFT correlators I: Partition functions.Nuclear Physics B, 646, 353–497.hep-th/0204148.
  • 220 Fuchs, J. and Schweigert, C. (2000).Solitonic sectors, alpha-induction and symmetry breaking boundaries.Physics Letters, B490, 163–172.hep-th/0006181.
  • 221 Fuchs, J. and Schweigert, C. (preprint 2001).Category theoryMathworldPlanetmathPlanetmathPlanetmathPlanetmath for conformal boundary conditions.math.CT/0106050.
  • 222 Gabbiani, F. and Fröhlich, J. (1993).Operator algebras and conformal field theory.Communications in Mathematical Physics, 155, 569–640.
  • 223 Gannon, T. (1993).WZW commutants, lattices and level – one partition functions.Nuclear Physics B, 396, 708–736.
  • 224 Gannon, T. (1994).The classification of affine SU(3) modular invariantpartition functions.Communications in Mathematical Physics,161, 233–264.
  • 225 Gannon, T. and Ho-Kim, Q. (1994).The rank-four heterotic modular invariant partition functions.Nuclear Physics B, 425, 319–342.
  • 226 Gantmacher, F. R. (1960).The theory of matrices. Vol. 2.Chelsea.
  • 227 Ge, L. and Popa, S. (1998).On some decomposition properties for factors of type II1.Duke Mathematical Journal, 94, 79–101.
  • 228 Gepner, D. and Witten, E. (1986).String theory on group manifolds.Nuclear Physics B, 278, 493–549.
  • 229 Gnerre, S. (2000).Free compositions of paragroups.Journal of Functional Analysis, 175, 251–278.
  • 230 Goddard, P., Kent, A. and Olive, D. (1986).Unitary representationsMathworldPlanetmath of the Virasoro andsuper-Virasoro algebras.Communications in Mathematical Physics,103, 105–119.
  • 231 Goddard, P., Nahm, W. and Olive, D. (1985).Symmetric spaces, Sugawara’s energy momentum tensor in twodimensions and free Fermions.Physics Letters, 160B, 111–116.
  • 232 Goddard, P. and Olive, D. (1988).Kac–Moody and Virasoro algebras.Advanced Series in Mathematical Physics,3, World Scientific.
  • 233 Goldman, M. (1960).On subfactors of type II1.The Michigan Mathematical Journal, 7, 167–172.
  • 234 Goldschmidt, D. M. and Jones, V. F. R. (1989)Metaplectic link invariants.Geometriae Dedicata, 31, 165–191.
  • 235 Goodman, F., de la Harpe, P. and Jones, V. F. R. (1989).Coxeter graphs and towers of algebras.MSRI Publications (Springer), 14.
  • 236 Goodman, F. and Wenzl, H. (1990).Littlewood Richardson coefficients for Heckealgebras at roots of unityMathworldPlanetmath.Advances in Mathematics, 82, 244–265.
  • 237 Goto, S. (1994).Orbifold construction for non-AFD subfactors.International Journal of Mathematics, 5, 725–746.
  • 238 Goto, S. (1995).SymmetricMathworldPlanetmathPlanetmath flat connections, triviality of Loi’s invariant, andorbifold subfactors.Publications of the RIMS, Kyoto University,31, 609–624.
  • 239 Goto, S. (1996).Commutativity of automorphisms of subfactorsmodulo inner automorphisms.Proceedings of the American Mathematical Society,124, 3391–3398.
  • 240 Goto, S. (2000).Quantum double construction for subfactors arising fromperiodic commuting squares.Journal of the Mathematical Society of Japan,52, 187–198.
  • 241 Greenleaf, F. P. (1969).Invariant means on topological groupsMathworldPlanetmath and their applications,van Nostrand, New York.
  • 242 Grossman, P. (preprint 2006).Forked Temperley-Lieb algebras and intermediate subfactors.math.OA/0607335.
  • 243 Grossman, P., and Izumi, M. (2008).Classification of noncommuting quadrilateralsMathworldPlanetmath of factors.International Journal of Mathematics,19, 557–643.arXiv:0704.1121.
  • 244 Grossman, P. and Jones, V. F. R. (2007).Intermediate subfactors with no extra structure.Journal of the American Mathematical Society,20, 219–265.math.OA/0412423.
  • 245 Guido, D. and Longo, R. (1992).Relativistic invariance andcharge conjugation in quantum field theory.Communications in Mathematical Physics,148, 521—551.
  • 246 Guido, D. and Longo, R. (1995).An algebraic spin and statistics theorem.Communications in Mathematical Physics,172, 517–533.
  • 247 Guido, D. and Longo, R. (1996).The conformal spin and statistics theorem.Communications in Mathematical Physics,181, 11–35.
  • 248 Guido, D. and Longo, R. (in press).A converseMathworldPlanetmath Hawking-Unruh effect and dS2/CFT correspondance.Annales Henri Poincaré.gr-qc/0212025.
  • 249 Guido, D., Longo, R. and Wiesbrock, H.-W. (1998).Extensions of conformal nets and superselection structures.Communications in Mathematical Physics,192, 217–244.
  • 250 Guido, D., Longo, R., Roberts, J. E. and Verch, R. (2001).Charged sectors, spin and statistics in quantum field theoryon curved spacetimes.Reviews in Mathematical Physics, 13, 125–198.
  • 251 Guionnet, A., Jones, V. F. R., Shlyakhtenko, D. (preprint 2007).Random matricesMathworldPlanetmath, free probability, planar algebras and subfactors.arXiv:0712.2904.
  • 252 Haag, R. (1996).Local Quantum Physics.Springer-Verlag, Berlin-Heidelberg-New York.
  • 253 Haag, R and Kastler, T. (1964).An algebraic approach to quantum field theory.Journal of Mathematical Physics,5, 848–861.
  • 254 Haagerup, U. (1975).Normal weights on W*-algebras.Journal of Functional Analysis,19, 302–317.
  • 255 Haagerup, U. (1983).All nuclear C*-algebras are amenable.Inventiones Mathematica, 74, 305–319.
  • 256 Haagerup, U. (1987).Connes’ bicentralizer problem and the uniqueness ofthe injective factor of type III1.Acta Mathematica, 158, 95–148.
  • 257 Haagerup, U. (preprint 1991).Quasi-traces on exact C*–algebras are traces.
  • 258 Haagerup, U. (1994). Principal graphs of subfactors in the index range4<3+2. in Subfactors -Proceedings of the Taniguchi Symposium, Katata -,(ed. H. Araki, et al.), World Scientific, 1–38.
  • 259 Haagerup, U. and Störmer, E. (1990). Equivalences of normal states on von Neumann algebrasand the flow of weights. Advances in Mathematics 83, 180–262.
  • 260 Haagerup, U. and Störmer, E. (1990).Pointwise inner automorphisms of von Neumannalgebras (with an appendix by Sutherland, C. E.).Journal of Functional Analysis, 92, 177–201.
  • 261 Haagerup, U. and Winslöw, C. (1998).The Effros–Maréchal topology in the space ofvon Neumann algebras.American Journal of Mathematics, 120, 567–617.
  • 262 Haagerup, U. and Winslöw, C. (2000).The Effros–Maréchal topology in the space ofvon Neumann algebras, II.Journal of Functional Analysis, 171, 401–431.
  • 263 Hamachi, T. and Kosaki, H. (1988).Index and flow of weights of factors of type III.Proceedings of the Japan Academy, 64A, 11–13.
  • 264 Hamachi, T. and Kosaki, H. (1988).Inclusions of type III factors constructed from ergodic flows.Proceedings of the Japan Academy, 64A, 195–197.
  • 265 Hamachi, T. and Kosaki, H. (1993).Orbital factor map.Ergodic Theory and Dynamical Systems, 13, 515–532.
  • 266 de la Harpe, P. (1979).Moyennabilité du groupe unitaire et propriétéP de Schwartz des algèbres de von Neumann.Algèbres d’opérateurs (Séminaire, LesPlans-sur-Bex, Suisse 1978) (editor, P. de laHarpe), Lecture Notes in Mathematics,Springer-Verlag, 725, 220–227.
  • 267 de la Harpe, P. and Wenzl, H. (1987).OperationsMathworldPlanetmath sur les rayons spectraux de matricessymetriques entieres positivesPlanetmathPlanetmath.Comptes Rendus de l’Academie des Sciences, Série I,Mathématiques,305, 733–736.
  • 268 Havet, J.-F. (1976).Espérance conditionnelles permutables à un groupd’automorphismes sur une algèbre de von Neumann.Comptes Rendus de l’Academie des Sciences, Série I, Mathématiques,282 (1976), 1095–1098..
  • 269 Havet, J.-F. (1990).Espérance conditionnelle minimale.Journal of Operator Theory, 24, 33–35.
  • 270 Hayashi, T. (1993).Quantum group symmetry of partition functions ofIRF models and its application to Jones’ index theory.Communications in Mathematical Physics, 157, 331–345.
  • 271 Hayashi, T. (1996).Compact quantum groups of face type.Publications of the RIMS, Kyoto University,32, 351–369.
  • 272 Hayashi, T. (1998).Faes algebras I. A generalizationPlanetmathPlanetmath of quantum group theory.Journal of the Mathematical Society of Japan,50, 293–315.
  • 273 Hayashi, T. (1999).Face algebras and unitarity of SU(N)L-TQFT.Communications in Mathematical Physics,203, 211-247.
  • 274 Hayashi, T. (1999).Galois quantum groups of II1-subfactors.Tôhoku Mathematical Journal,51, 365–389.
  • 275 Hayashi, T. (2000).Harmonic function spaces of probability measures on fusionalgebras.Publications of the RIMS, Kyoto University,36, 231–252.
  • 276 Hayashi, T. and Yamagami, S. (2000).Amenable tensor categories and their realizationsas AFD bimodules.Journal of Functional Analysis, 172, 19–75.
  • 277 Herman, R. H. and Ocneanu, A. (1984).Stability for integer actions on UHF C*-algebras.Journal of Functional Analysis,59, 132–144.
  • 278 Hiai, F. (1988).Minimizing indices of conditional expectations onto a subfactor.Publications of the RIMS, Kyoto University, 24, 673–678.
  • 279 Hiai, F. (1990).Minimum index for subfactors and entropy I.Journal of Operator Theory, 24, 301–336.
  • 280 Hiai, F. (1991).Minimum index for subfactors and entropy, II.Journal of the Mathematical Society of Japan,43, 347–380.
  • 281 Hiai, F. (1994).Entropy and growth for derived towers of subfactors.in Subfactors —Proceedings of the Taniguchi Symposium, Katata —,(ed. H. Araki, et al.),World Scientific, 206–232.
  • 282 Hiai, F. (1995).Entropy for canonical shifts and strong amenability.International Journal of Mathematics,6, 381–396.
  • 283 Hiai, F. (1997).Standard invariants for crossed products inclusionsof factors.Pacific Journal of Mathematics,177, 237–267.
  • 284 Hiai, F. and Izumi, M. (1998).Amenability and strong amenability for fusion algebraswith applications to subfactor theory.International Journal of Mathematics, 9,669–722.
  • 285 Hislop, P. and Longo, R. (1982).Modular structure of the local algebrasassociated with the free massless scalar field theory.Communications in Mathematical Physics,84 (1982) 71–85.
  • 286 Hofman, A. J. (1972).On limit pointsPlanetmathPlanetmath of spectral radii of non-negativesymmetric integral matrices.Lecture Notes in Mathematics, 303,Springer Verlag, 165–172.
  • 287 Ikeda, K. (1998).Numerical evidence for flatness of Haagerup’s connections.Journal of the Mathematical Sciences, University of Tokyo,5, 257–272.
  • 288 Ishikawa, H. and Tani, T. (preprint 2002).Novel construction of boundary states in cosetconformal field theories.hep-th/0207177.
  • 289 Izumi, M. (1991).Application of fusion rules toclassification of subfactors.Publications of the RIMS, Kyoto University,27, 953–994.
  • 290 Izumi, M. (1992).Goldman’s type theorem for index 3.Publications of the RIMS, Kyoto University,28, 833–843.
  • 291 Izumi, M. (1993).On type III and type II principal graphs forsubfactors.Mathematica Scandinavica, 73, 307–319.
  • 292 Izumi, M. (1993).Subalgebras of infinite C*-algebras withfinite Watatani indices I. Cuntz algebras.Communications in Mathematical Physics,155, 157–182.
  • 293 Izumi, M. (1994).On flatness of the Coxeter graph E8.Pacific Journal of Mathematics, 166,305–327.
  • 294 Izumi, M. (1994).Canonical extension of endomorphisms of factors.in Subfactors — Proceedings of the Taniguchi Symposium, Katata —,(ed. H. Araki, et al.), World Scientific, 274–293.
  • 295 Izumi, M. (1998).Subalgebras of infinite C*-algebras withfinite Watatani indices II: Cuntz-Krieger algebras.Duke Mathematical Journal, 91, 409–461.
  • 296 Izumi, M. (1999).Actions of compact quantum groups on operator algebras.in XIIth International Congress of Mathematical Physics,International Press, 249–253.
  • 297 Izumi, M. (2000).The structure of sectors associated with Longo-Rehreninclusions I. General theory.Communications in Mathematical Physics, 213, 127–179.
  • 298 Izumi, M. (2001).The structure of sectors associated with Longo-Rehreninclusions II. Examples.Reviews in Mathematical Physics, 13, 603–674.
  • 299 Izumi, M. (2002).Non-commutative Markov operatorsMathworldPlanetmath arising from subfactors.Advances in Mathematics, 169, 1–57.
  • 300 Izumi, M. (2003).Canonical extension of endomorphisms of type III factors.American Journal of Mathematics, 125, 1–56.
  • 301 Izumi, M. (2002).Inclusions of simple C*-algebras.Journal für die Reine und Angewandte Mathematik,547, 97–138.
  • 302 Izumi, M. (2002).Characterization of isomorphicPlanetmathPlanetmath group-subgroup subfactors.International Mathematics Research Notices, 1791–1803.
  • 303 Izumi, M. and Kawahigashi, Y. (1993).Classification of subfactors with the principal graph Dn(1).Journal of Functional Analysis, 112, 257–286.
  • 304 Izumi, M. and Kosaki, H. (1996).Finite dimensional Kac algebras arising from certaingroup actionsMathworldPlanetmath on a factor.International Mathematics Research Notices, 357–370.
  • 305 Izumi, M. and Kosaki, H. (2002).Kac algebras arising fromcomposition of subfactors: General theory and classification.Memoirs of the American Mathematical Society, 158,no. 750.
  • 306 Izumi, M. and Kosaki, H. (2002).On a subfactor analogue of the second cohomology.Reviews in Mathematical Physics, 14, 733–757.
  • 307 Izumi, M., Longo, R. and Popa, S. (1998).A Galois correspondence for compact groups of automorphismsof von Neumann algebras with a generalization to Kac algebras.Journal of Functional Analysis, 155, 25–63.
  • 308 Jimbo, M. (1986).A q-differencePlanetmathPlanetmath analogue of U(g) and the Yang-Baxterequation.Letters in Mathematical Physics,102, 537–567.
  • 309 Jimbo, M. (1986).A q-analogue of U(N+1), Hecke algebra and theYang-Baxter equation.Letters in Mathematical Physics,11, 247–252.
  • 310 Jimbo, M., T, Miwa and Okado, M. (1987).Solvable lattice models whose states are dominantintegral weights of An-1(1).Letters in Mathematical Physics, 14,123–131.
  • 311 Jimbo, M., T, Miwa and Okado, M. (1988).Solvable lattice models related to the vectorrepresentation of classical simple Lie algebras.Communications in Mathematical Physics,116, 507–525.
  • 312 Jones, V. F. R. (1980).A factor anti-isomorphic to itself but withoutinvolutoryMathworldPlanetmath anti-automorphisms.Mathematica Scandinavica, 46, 103–117.
  • 313 Jones, V. F. R. (1980).Actions of finite groupsMathworldPlanetmathon the hyperfinite type II1 factor.Memoirs of the American Mathematical Society,237.
  • 314 Jones, V. F. R. (1983).Index for subfactors.Inventiones Mathematicae, 72, 1–25.
  • 315 Jones, V. F. R. (1985).A polynomial invariant for knots via von Neumann algebras.Bulletin of the American Mathematical Society, 12, 103–112.
  • 316 Jones, V. F. R. (1986).A new knot polynomial and von Neumann algebras.Notices of the American Mathematical Society,33, 219–225.
  • 317 Jones, V. F. R. (1986).Braid groups, Hecke algebras and type II1factors. (1986). in Geometric Methods inOperator Algebras, ed. H. Araki and E. G. Effros.,Longman, 242–273.
  • 318 Jones, V. F. R. (1987).Hecke algebra representations of braid groups andlink polynomials.Annals of Mathematics, 126, 335–388.
  • 319 Jones, V. F. R. (1989).On a certain value of the Kauffman polynomial.Communications in Mathematical Physics, 125, 459–467.
  • 320 Jones, V. F. R. (1989).On knot invariants related to some statistical mechanical models.Pacific Journal of Mathematics, 137, 311–334.
  • 321 Jones, V. F. R. (1990).Knots, braids and statistical mechanics.in Advances in differential geometry and topology, 149–184.
  • 322 Jones, V. F. R. (1990).Baxterization.International Journal of Modern Physics B,4, 701–713.
  • 323 Jones, V. F. R. (1990).Notes on subfactors and statistical mechanics.International Journal of Modern Physics A,5, 441–460.
  • 324 Jones, V. F. R. (1991).von Neumann algebras in mathematics and physics.Proceedings of ICM-90, 121–138, Springer.
  • 325 Jones, V. F. R. (1991).Subfactors and knots.CBMS Regional Conference Series in Mathematics,80.
  • 326 Jones, V. F. R. (1992).From quantum theory to knot theoryMathworldPlanetmath and back: a vonNeumann algebra excursion.in American Mathematical Society centennial publications, Vol. II,321–336.
  • 327 Jones, V. F. R. (1994).The Potts model and the symmetric groupMathworldPlanetmathPlanetmath.in Subfactors —Proceedings of the Taniguchi Symposium, Katata —,(ed. H. Araki, et al.),World Scientific, 259–267.
  • 328 Jones, V. F. R. (1994).On a family of almost commuting endomorphisms.Journal of Functional Analysis, 119, 84–90.
  • 329 Jones, V. F. R. (1995).Fusion en algèbres de von Neumann et groupes de lacets(d’après A. Wassermann).Seminaire Bourbaki,800, 1–20.
  • 330 Jones, V. F. R. (in press).Planar algebras I.New Zealand Journal of Mathematics.math.QA/9909027.
  • 331 Jones, V. F. R. (2000).Ten problems.in Mathematics: frontiers and perspectives,Amer. Math. Soc., 79–91.
  • 332 Jones, V. F. R. (2000).The planar algebras of a bipartite graph.in Knots in Hellas ’98, World Scientific, 94–117.
  • 333 Jones, V. F. R. (2001).The annular structure of subfactors.in Essays on geometry and related topics,Monographies de L’Enseignement Matheḿatique, 38, 401–463.
  • 334 Jones, V. F. R. (preprint 2003).In and around the origin of quantum groups.math.OA/0309199.
  • 335 Jones, V. F. R. (preprint 2003).Quadratic tangles in planar algebras.
  • 336 Jones, V. F. R. and Sunder, V. S. (1997).Introduction to subfactors.London Math. Soc. Lecture Notes Series 234, CambridgeUniversity Press.
  • 337 Jones, V. F. R. and Takesaki, M. (1984).Actions of compact abelian groups on semifiniteinjective factors.Acta Mathematica, 153, 213–258.
  • 338 Jones, V. F. R. and Wassermann, A. (in preparation).Fermions on the circle and representations of loop groups.
  • 339 Jones, V. F. R. and Xu, F. (2004).IntersectionsMathworldPlanetmathPlanetmath of finite families of finite index subfactors.International Journal of Mathematics, 15, 717–733.math.OA/0406331.
  • 340 Kac, V. (1990).Infinite dimensional Lie algebras.3ème édition, Cambridge University Press.
  • 341 Kac, V., Longo, R. and Xu, F. (2004).Solitons in affine and permutationMathworldPlanetmath orbifolds.Communications in Mathematical Physics, 253, 723–764.math.OA/0312512.
  • 342 Kač, V. and Petersen, D. H. (1984).Infinite dimensional Lie algebras, theta functions,and modular formsMathworldPlanetmath.Advances in Mathematics, 53, 125–264.
  • 343 Kač, V. and Raina, A. K. (1987).Highest weight representations of infinite dimensional Lie algebras.World Scientific.
  • 344 Kadison, R. V. and Ringrose, J. R. (1983).Fundamentals of the Theory of Operator AlgebrasVol I. Academic Press.
  • 345 Kadison, R. V. and Ringrose, J. R. (1986).Fundamentals of the Theory of Operator AlgebrasVol II. Academic Press.
  • 346 Kajiwara, T., Pinzari, C., and Watatani, Y. (2004).Jones index theory for Hilbert C*-bimodules andits equivalence with conjugation theory.Journal of Functional Analysis, 215, 1–49.math.OA/0301259
  • 347 Kallman, R. R. (1971).Groups of inner automorphisms of von Neumann algebras.Journal of Functional Analysis, 7, 43–60.
  • 348 Karowski, M. (1987).Conformal quantum field theories and integrable theories.Proceedings of the Brasov Summer School, September1987, ed. P. Dita et al., Academic Press.
  • 349 Karowski, M. (1988).Finite size corrections for integrable systems and conformalproperties of six-vertex models.Nuclear Physics B, 300, 473–499.
  • 350 Kastler D. (1990).(editor) The algebraic theory of Superselection sectors.Introduction and recent results.World Scientific, Singapore.
  • 351 Kato, A. (1987).Classification of modular invariant partitionfunctions in two dimensions.Modern Physics Letters A, 2, 585–600.
  • 352 Kauffman, L. H. (1986).Chromatic polynomial, Potts model, Jones polynomialMathworldPlanetmathLecture notes.
  • 353 Kauffman, L. (1987).State models and the Jones polynomial.Topology, 26, 395–407.
  • 354 Kauffman, L. (1990).An invariant of regular isotopy.Transactions of the American Mathematical Society,318, 417–471.
  • 355 Kauffman, L. (1991).Knots and Physics.World Scientific, Singapore.
  • 356 Kauffman, L. and Lins, S. L. (1994).Temperley–Lieb recoupling theory and invariants of 3-manifolds.Princeton University Press, Princeton.
  • 357 Kawahigashi, Y. (1992).Automorphisms commuting with a conditional expectationonto a subfactor with finite index.Journal of Operator Theory,28, 127–145.
  • 358 Kawahigashi, Y. (1992).Exactly solvable orbifold models and subfactors.Functional Analysis and Related Topics,Lecture Notes in Mathematics, Springer, 1540, 127–147.
  • 359 Kawahigashi, Y. (1993).Centrally trivial automorphisms and an analogue ofConnes’s χ(M) for subfactors.Duke Mathematical Journal, 71, 93–118.
  • 360 Kawahigashi, Y. (1994).Paragroup and their actions on subfactors.in Subfactors —Proceedings of the Taniguchi Symposium, Katata —,(ed. H. Araki, et al.),World Scientific, 64–84.
  • 361 Kawahigashi, Y. (1995).On flatness of Ocneanu’s connections on the Dynkin diagramsMathworldPlanetmathand classification of subfactors.Journal of Functional Analysis,127, 63–107.
  • 362 Kawahigashi, Y. (1995).Orbifold subfactors, central sequences and the relative Jonesinvariant κ.International Mathematical Research Notices,129–140.
  • 363 Kawahigashi, Y. (1995).Classification of paragroup actions on subfactors.Publications of the RIMS, Kyoto University,31, 481–517.
  • 364 Kawahigashi, Y. (1996).Paragroups as quantized Galois groups of subfactors.Sugaku Expositions, 9, 21–35.
  • 365 Kawahigashi, Y. (1997).Classification of approximately inner automorphisms ofsubfactors.Mathematische Annalen, 308, 425–438.
  • 366 Kawahigashi, Y. (1997).Quantum doubles and orbifold subfactors.in Operator Algebras and Quantum Field Theory(ed. S. Doplicher, et al.), International Press, 271–283.
  • 367 Kawahigashi, Y. (1998).Subfactors and paragroup theory.in Operator Algebras and Operator Theory (ed. L. Ge, et al.),Contemporary Mathematics, 228, 179–188.
  • 368 Kawahigashi, Y. (1999).Quantum Galois correspondence for subfactors.Journal of Functional Analysis, 167, 481–497.
  • 369 Kawahigashi, Y. (2004).Braiding and nets of factors on the circle.in Operator Algebras and Applications (ed. H. Kosaki),Advanced Studies in Pure Mathematics 38, 219–228.
  • 370 Kawahigashi, Y. (2001).Braiding and extensions of endomorphisms of subfactors.in Mathematical Physics in Mathematics and Physics (ed. R. Longo),The Fields Institute Communications 30, Providence, Rhode Island:AMS Publications, 261–269.
  • 371 Kawahigashi, Y. (2002).Generalized Longo-Rehren subfactors and α-induction.Communications in Mathematical Physics, 226, 269–287.math.OA/0107127.
  • 372 Kawahigashi, Y. (2003).Conformal quantum field theory and subfactors.Acta Mathematica Sinica, 19, 557–566.
  • 373 Kawahigashi, Y. (2003).Classification of operator algebraic conformal field theories.“Advances in Quantum Dynamics”, Contemporary Mathematics,335, 183–193.math.OA/0211141.
  • 374 Kawahigashi, Y. (2005).Subfactor theory and its applications— operator algebras and quantum field theory —.“Selected Papers on Differential Equations”,Amer. Math. Soc. Transl. 215, Amer. Math. Soc., 97–108.
  • 375 Kawahigashi, Y. (2005). Topological quantum field theories and operator algebras.Quantum Field Theory and Noncommutative Geometry, Lecture Notes in Physics, Springer, 662, 241–253. math.OA/0306112.
  • 376 Kawahigashi, Y. (2005). Classification of operator algebraic conformal field theoriesin dimensions one and two. XIVth International Congress on Mathematical Physics,World Scientific, 476–485. math-ph/0308029.
  • 377 Kawahigashi, Y. (preprint 2007). Conformal field theory and operator algebras.arXiv:0704.0097.
  • 378 Kawahigashi, Y. (preprint 2007). Superconformal field theory and operator algebras.
  • 379 Kawahigashi, Y. and Longo, R. (2004).Classification of Local Conformal Nets. Case c<1.Annals of Mathematics, 160, 493–522.math-ph/0201015.
  • 380 Kawahigashi, Y. and Longo, R. (2004).Classification of two-dimensional local conformal nets with c<1and 2-cohomology vanishing for tensor categories.Communications in Mathematical Physics, 244, 63–97.math-ph/0304022.
  • 381 Kawahigashi, Y. and Longo, R. (2005).Noncommutative spectral invariants and black hole entropy.Communications in Mathematical Physics, 257, 193–225.math-ph/0405037.
  • 382 Kawahigashi, Y. and Longo, R. (2006).Local conformal nets arising from framed vertex operator algebras.Advances in Mathematics, 206, 729–751. math.OA/0407263.
  • 383 Kawahigashi, Y., Longo, R. and Müger, M. (2001).Multi-interval subfactors and modularity of representationsin conformal field theory. Communications in Mathematical Physics, 219, 631–669.math.OA/9903104.
  • 384 Kawahigashi, Y., Longo, R., Pennig, U. and Rehren, K.-H. (2007).The classification of non-local chiral CFT with c<1.Communications in Mathematical Physics, 271, 375–385. math.OA/0505130.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 19:51:32