请输入您要查询的字词:

 

单词 ValuationDeterminedByValuationDomain
释义

valuation determined by valuation domain


Theorem.

Every valuation domain determines a Krull valuation of the field of fractionsMathworldPlanetmath.

Proof.  Let R be a valuation domain, K its field of fractions and E the group of units of R. Then E is a normal subgroupMathworldPlanetmath of the multiplicative groupMathworldPlanetmathK*=K{0}.  So we can form the factor group  K*/E, consisting of all cosets aE where  aK*,  and attach to it the additional “coset” 0E getting thus a multiplicative group  K/E  equipped with zero.  If  𝔪=RE  is the maximal idealMathworldPlanetmathPlanetmath of R (any valuation domain has a unique maximal ideal— cf. valuation domain is local), then we denote  𝔪*=𝔪{0}  and  S=𝔪*/E={aE:a𝔪*}.  Then the subsemigroup S of K/E makes K/E an ordered group equipped with zero.  It is not hard to check that the mapping

x|x|:=xE

from K to  K/E  is a Krull valuation of the field K.

Titlevaluation determined by valuation domain
Canonical nameValuationDeterminedByValuationDomain
Date of creation2013-03-22 14:54:58
Last modified on2013-03-22 14:54:58
Ownerpahio (2872)
Last modified bypahio (2872)
Numerical id10
Authorpahio (2872)
Entry typeTheorem
Classificationmsc 13F30
Classificationmsc 13A18
Classificationmsc 12J20
Classificationmsc 11R99
Related topicValuationDomainIsLocal
Related topicKrullValuationDomain
Related topicPlaceOfField
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 15:05:53