stronger Hilbert theorem 90
Let be a field and let be an algebraic closure of. By we denote the abelian group
andsimilarly (here the operation ismultiplication). Also we let
be the absoluteGalois group of .
Theorem 1 (Hilbert 90).
Let be a field.
- 1.
- 2.
- 3.
If , the characteristic
of , doesnot divide (or ) then
where denotes the set of all -roots of unity
.
References
- 1 J.P. Serre, Galois Cohomology,Springer-Verlag, New York.
- 2 J.P. Serre, Local Fields
,Springer-Verlag, New York.