请输入您要查询的字词:

 

单词 VolumeOfSolidOfRevolution
释义

volume of solid of revolution


Let us consider a solid of revolution, which is generated when a planar domain D rotates about a line of the same plane. We chose this line for the x-axis, and for simplicity we assume that the boundaries of D are the mentioned axis, two ordinates   x=a,  x=b(>a), and a continuousMathworldPlanetmath curve   y=f(x).

Between the bounds a anb b we fit a sequence of points  x1,x2,,xn-1  and draw through these the ordinates which divide the domain D in n parts. Moreover we form for every part the (maximal) inscribedMathworldPlanetmath and the (minimal) circumscribedMathworldPlanetmath rectangleMathworldPlanetmath. In the revolution of D, each rectangle generates a circular cylinder. The considered solid of revolution is part of the volume V> of the union of the cyliders generated by the circumscribed rectangles and at the same time contains the volume V< of the union of the cylinders generated by the inscribed rectangles.

Now it is apparent that

V>=π[M12(x1-a)+M22(x2-x1)++Mn2(b-xn-1)],
V<=π[m12(x1-a)+m22(x2-x1)++mn2(b-xn-1)],

where  M1,M2,,Mn  are the greatest and  m1,m2,,mn  the least values of the continuous function f on the intervalsMathworldPlanetmathPlanetmath (http://planetmath.org/Interval)   [a,x1],  [x1,x2], …, [xn-1,b]. The volume V of the solid of revolution thus satisfies

V<VV>,

and this is true for any   x1<x2<<xn-1  of the interval  [a,b].The theory of the Riemann integral guarantees that there exists only one real number V having this property and that it is also the definition of the integral abπ[f(x)]2𝑑x. Therefore the volume of the given solid of revolution can be obtained from

V=πab[f(x)]2𝑑x.

References

  • 1 E. Lindelöf: Johdatus korkeampaan analyysiin. Neljäs painos.  Werner Söderström Osakeyhtiö, Porvoo ja Helsinki (1956).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 5:56:59