请输入您要查询的字词:

 

单词 CongruenceInAlgebraicNumberField
释义

congruence in algebraic number field


Definition.  Let α, β and κ be integers (http://planetmath.org/AlgebraicInteger) of an algebraic number fieldMathworldPlanetmath K and  κ0.  One defines

αβ(modκ)(1)

if and only if  κα-β,  i.e. iff there is an integer λ of K with α-β=λκ.

Theorem.  The congruenceMathworldPlanetmathPlanetmathPlanetmath” modulo κ defined above is an equivalence relationMathworldPlanetmath in the maximal orderPlanetmathPlanetmath of K.  There are only a finite amount of the equivalence classesMathworldPlanetmath, the residue classes modulo κ.

Proof.  For justifying the transitivity of “”, suppose (1) and  βγ(modκ); then there are the integers λ and μ of K such that  α-β=λκ, β-γ=μκ.  Adding these equations we see that  α-γ=(λ+μ)κ  with the integer λ+μ of K.  Accordingly,  αγ(modκ).
Let ω be an arbitrary integer of K and  {ω1,ω2,,ωn}  a minimal basis of the field.  Then we can write

ω=a1ω1+a2ω2++anωn,

where the ai’s are rational integers.  For  i=1, 2,,n, the division algorithmPlanetmathPlanetmath determines the rational integers qi and ri with

ai=N(κ)qi+ri,0ri<|N(κ)|,

whence

ω=N(κ)(q1ω1+q2ω2++qnωn=π)+(r1ω1+r2ω2++rnωn=ϱ).

So we have

ω=N(κ)π+ϱ,(2)

where π and ϱ are some integers of the field.  If  κ(1),κ(2),,κ(n)  are the algebraic conjugates of  κ=κ(1),  then

N(κ)=κ(1)integerκ(2)κ(n)integer=κκ.

Hence, κ divides N(κ) in the ring of integers of K, and (2) implies

ωϱ(modκ).

Since any number ri has |N(κ)| different possible values 0, 1,,|N(κ)|-1, there exist |N(κ)|n different ordered tuplets  (r1,r2,,rn).  Therefore there exist at most|N(κ)|n different residues and residue classes in the ring.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 22:06:16