请输入您要查询的字词:

 

单词 ConjugateFields
释义

conjugate fields


If  ϑ1,ϑ2,,ϑn  are the algebraic conjugates of the algebraic numberMathworldPlanetmath ϑ1, then the algebraic number fieldsMathworldPlanetmath(ϑ1),(ϑ2),,(ϑn) are the conjugate fields of (ϑ1).

Notice that the conjugate fields of (ϑ1) are always isomorphicPlanetmathPlanetmathPlanetmath but not necessarily distinct.

All conjugate fields are equal, i.e. (http://planetmath.org/Ie) (ϑ1)=(ϑ2)==(ϑn), or equivalently ϑ1,,ϑn belong to (ϑ1), if and only if the extensionPlanetmathPlanetmath (ϑ1)/ is a Galois extensionMathworldPlanetmath of fields. The reason for this is that if ϑ1 is an algebraic number and m(x) is the minimal polynomialPlanetmathPlanetmath of ϑ1 then the roots of m(x) are precisely the algebraic conjugates of ϑ1.

For example, let ϑ1=2. Then its only conjugatePlanetmathPlanetmathPlanetmath is ϑ2=-2 and (2) is Galois and contains both ϑ1 and ϑ2. Similarly, let p be a prime and let ϑ1=ζ be a primitive pth root of unityMathworldPlanetmath (http://planetmath.org/PrimitiveRootOfUnity). Then the algebraic conjugates of ζ are ζ2,,ζp-1 and so all conjugate fields are equal to (ζ) and the extension (ζ)/ is Galois. It is a cyclotomic extension of .

Now let ϑ1=23 and let ζ be a primitive 3rd root of unity (i.e. ζ is a root of x2+x+1, so we can pick ζ=-1+-32). Then the conjugates of ϑ1 are ϑ1, ϑ2=ζ23, and ϑ3=ζ223. The three conjugate fields (ϑ1), (ϑ2), and (ϑ3) are distinct in this case. The Galois closure of each of these fields is (ζ,23).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 9:37:31