请输入您要查询的字词:

 

单词 ZetaFunctionOfAGroup
释义

Zeta function of a group


Let G be a finitely generated group and let 𝒳 be afamily of finite index subgroupsMathworldPlanetmathPlanetmath of G. Define

an(𝒳)=|{H𝒳|G:H|=n}|.

Note that these numbers are finite since a finitely generated grouphas only finitely many subgroups of a given index. We define thezeta function of the family 𝒳 to be the formalDirichlet seriesMathworldPlanetmath

ζ𝒳(s)=n=1an(𝒳)n-s.

Two important special cases are the zeta function counting allsubgroups and the zeta function counting normal subgroupsMathworldPlanetmath. Let𝒮(G) and 𝒩(G) be the families of all finiteindex subgroups of G and of all finite index normal subgroups ofG, respectively. We write an(G)=an(𝒮(G)) andan(G)=an(𝒩(G)) and define

ζG(s)=ζ𝒮(G)(s)=HfG|G:H|-s,

and

ζG(s)=ζ𝒩(G)(s)=NfG|G:N|-s.

If, in addition, G is nilpotentPlanetmathPlanetmath, then ζG has adecomposition as a formal Euler productMathworldPlanetmath

ζG(s)=p primeζG,p(s),

where

ζG,p(s)=i=0api(G)p-is.

An analogous result holds for the normal zeta functionζG. The result for both ζG andζG can be proved using properties of the profinitecompletion of G. However, a simpler proof for the normal zetafunction is provided by the fact that a finite nilpotent groupdecomposes into a direct productMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath of its Sylow subgroups. These resultsallow the zeta functions to be expressed in terms of p-adicintegrals, which can in turn be used to prove (using some high-poweredmachinery) that ζG,p(s) and ζG,p(s) arerational functions in p and p-s.

In the case when G is a 𝒯-group, that is, G isfinitely generatedMathworldPlanetmathPlanetmath, torsion free, and nilpotent, define αGto be the abscissa of convergence of ζG. That is,αG is the smallest α such thatζG defines a holomorphic functionMathworldPlanetmath in the right half-plane{z(z)>α}. It can then be shown thatαGh(G), where h(G) is the Hirsch numberof G. Therefore, if G is a 𝒯-group, ζGdefines a holomorphic function in some right half-plane.

References

  • 1 F. J. Grunewald, D. Segal, and G. C. Smith, Subgroups of finite index innilpotent groups, Invent. math. 93 (1988), 185–223.
  • 2 M. P. F. du Sautoy, Zeta functions of groups: the quest for order versus the flightfrom ennui, Groups St. Andrews 2001 in Oxford. Vol. I, London Math. Soc.Lecture Note Ser., vol. 304, Cambridge Univ. Press, 2003, pp. 150–189.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 10:14:31