请输入您要查询的字词:

 

单词 ZolotarevsLemma
释义

Zolotarev’s lemma


We will identify the ring nof integers modulo n, with the set {0,1,n-1}.

Lemma 1 (Zolotarev).

For any prime numberMathworldPlanetmath p andany mZp*, the Legendre symbolMathworldPlanetmath (mp) is equalto the signaturePlanetmathPlanetmathPlanetmath (http://planetmath.org/SignatureOfAPermutation) of the permutationMathworldPlanetmath τm:xmx of Zp*.

Proof.

We write ϵ(σ) for the signature of any permutation σ. If σ is a circular permutation on a set of k elements, then ϵ(σ)=(-1)k-1. Let i be the order of m in p*. Then the permutation τm consists of (p-1)/i orbits, each of size i, whence

ϵ(τm)=(-1)(i-1)(p-1)/i

If i is even, then

m(p-1)/2=mi2p-1i=(-1)p-1i=ϵ(τm)

And if i is odd, then 2i divides p-1, so

m(p-1)/2=mip-12i=1=ϵ(τm).

In both cases, the lemma follows from Euler’s criterion.∎

Lemma 1 extends easily from the Legendre symbol to the Jacobi symbolMathworldPlanetmath (mn) for odd n. The following is Zolotarev’s penetrating proof of the quadratic reciprocity law, using Lemma 1.

Lemma 2.

Let λ be the permutation of the set

Amn={0,1,,m-1}×{0,1,,n-1}

which maps the kth element of the sequenceMathworldPlanetmath

(0,0)(0,1)(0,n-1)(1,0)(1,n-1)(2,0)(m-1,n-1),

to the kth element of the sequence

(0,0)(1,0)(m-1,0)(0,1)(m-1,1)(0,2)(m-1,n-1),

for every k from 1 to mn. Then

ϵ(λ)=(-1)m(m-1)n(n-1)/4

and if m and n are both odd,

ϵ(λ)=(-1)(m-1)(n-1)/4.
Proof.

We will use the fact that the signature of a permutation ofa finite totally ordered setMathworldPlanetmath is determined by the number ofinversions of that permutation.The sequence (0,0),(0,1)defines on Amn a total order in which the relationMathworldPlanetmath (i,j)<(i,j) means

i<i or (i=i and j<j).

But λ(i,j)<λ(i,j) means

j<j or (j=j and i<i).

The only pairs ((i,j),(i,j)) that get inverted are, therefore,the ones with i<i and j>j.There are indeed (m2)(n2)such pairs, proving the first formulaMathworldPlanetmathPlanetmath, and the second follows easily.∎

And finally, we proceed to prove quadratic reciprocity. Let p and q be distinct odd primes. Denote by π thecanonical ring isomorphismPlanetmathPlanetmathPlanetmathPlanetmath pqp×q.Define two permutations α and β of p×q byα(x,y)=(qx+y,y) and β(x,y)=(x,x+py). Finally, define a map λ:pqpq by λ(x+qy)=px+yfor x{0,1,q-1} and y{0,1,p-1}.Evidently λ is a permutation.

Note that we have π(qx+y)=(qx+y,y) and π(x+py)=(x,x+py), sotherefore

πλπ-1α=β.

Let us compare the signatures of the two sides. The permutation mqx+y is the compositionMathworldPlanetmathPlanetmath of mqx and mm+y. The latter has signature 1, whence by Lemma 1,

ϵ(α)=(qp)q=(qp)

and similarly

ϵ(β)=(pq)p=(pq).

By Lemma 2,

ϵ(πλπ-1)=(-1)(p-1)(q-1)/4.

Thus

(-1)(p-1)(q-1)/4(qp)=(pq)

which is the quadratic reciprocity law.

Reference

G. Zolotarev, Nouvelle démonstration de la loi de réciprocité de Legendre,Nouv. Ann. Math (2), 11 (1872), 354-362

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 15:39:26