请输入您要查询的字词:

 

单词 ConvergenceOfComplexTermSeries
释义

convergence of complex term series


A series

ν=1cν=c1+c2+c3+(1)

with complex terms

cν=aν+ibν  (aν,bνν)

is convergent iff the sequence of its partial sums converges to a complex numberMathworldPlanetmathPlanetmath.

Theorem 1.  The series (1) converges iff the series

ν=1aνandν=1bν(2)

formed by real parts and the imaginary parts of its terms both are convergent.

Proof.  Let  ε>0.  Denote

ν=1naν:=sn,ν=1nbν:=tn,ν=1ncν:=un.

If the series (2) are convergent with sums S and T, then there is a number N such that

|sn-S|<ε2,|tn-T|<ε2whennN.

Accordingly,

|un-(S+iT)|=(sn-S)2+(tn-T)2|sn-S|+|tn-T|<εwhennN,

i.e. the series (1) converges to S+iT.  If, conversely, (1) converges to a complex number

u=s+it(s,t),

then

|sn-s||(sn-s)+i(tn-t)|=|un-u|,|tn-t||(sn-s)+i(tn-t)|=|un-u|,

and consequently,  limnsn=s  and  limntn=t, i.e. the series (2) are convergent with sums the real numbers s and t.

Theorem 2.  The series (1) converges absolutely iff the series (2) both converge absolutely.

Proof.  The absolute convergence of (1) means that the series

ν=1|cν|

converges.  But since  |cν|2=|aν|2+|bν|2,  we have

|aν||cν|;|bν||cν||aν|+|cν|.

From these inequalities we can infer the assertion of the theorem 2.

References

  • 1 R. Nevanlinna & V. Paatero: Funktioteoria.  Kustannusosakeyhtiö Otava. Helsinki (1963).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 16:04:20