请输入您要查询的字词:

 

单词 ConvergingAlternatingSeriesNotSatisfyingAllLeibnizConditions
释义

converging alternating series not satisfying all Leibniz’ conditions


The alternating seriesMathworldPlanetmath

n=1(-1)n-1n+(-1)n-1=12-11+14-13+16-15+-(1)

satisfies the other requirements of Leibniz test except the monotonicity of the absolute valuesMathworldPlanetmathPlanetmathPlanetmath of the terms.  The convergence may however be shown by manipulating the terms as follows.

We first multiply the numerator and the denominator of the general term by the difference n-(-1)n-1, getting from (1)

n=1(-1)n-1n+(-1)n-1=12+n=2n-(-1)n-1n2-1(-1)n-1=12+n=2((-1)n-1nn2-1-1n2-1).(2)

One can that the series

n=2(-1)n-1nn2-1(3)

satisfies all requirements of Leibniz test and thus is convergentMathworldPlanetmathPlanetmath.  Since

0<1n2-1<1n2-12n2= 21n2forn2,

and the over-harmonic series n=21n2 converges, the comparison testMathworldPlanetmath guarantees the convergence of the series

n=21n2-1.(4)

Therefore the difference series of (3) and (4) and consequently, by (2), the given series (1) is convergent.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 13:27:45