请输入您要查询的字词:

 

单词 CWcomplexApproximationOfQuantumStateSpacesInQAT
释义

CW-complex approximation of quantum state spaces in QAT


Theorem 1.

Let [QFj]j=1,,n be a complete sequence of commuting quantum spin ‘foams’(QSFs) in an arbitrary quantum state spacePlanetmathPlanetmath (QSS) (http://planetmath.org/QuantumSpaceTimes), and let (QFj,QSSj) be the corresponding sequence of pair subspacesPlanetmathPlanetmath of QST. If Zj is a sequence of CW-complexesMathworldPlanetmath such that for anyj , QFjZj, then there exists a sequence of n-connected models (QFj,Zj) of(QFj,QSSj) and a sequence of induced isomorphismsMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath f*j:πi(Zj)πi(QSSj)for i>n, together with a sequence of induced monomorphismsMathworldPlanetmathPlanetmathPlanetmathPlanetmath for i=n.

Remark 0.1.

There exist weak homotopy equivalencesMathworldPlanetmathPlanetmath between each Zj and QSSj spacesin such a sequence. Therefore, there exists a CW–complex approximation of QSS defined by the sequence[Zj]j=1,,n of CW-complexes with dimensionPlanetmathPlanetmath n2. This CW–approximation isunique up to regularPlanetmathPlanetmath homotopy equivalence.

Corollary 2.

The n-connected models (QFj,Zj) of (QFj,QSSj) form the Model Category ofQuantum Spin Foams (http://planetmath.org/SpinNetworksAndSpinFoams) (QFj), whose morphismsMathworldPlanetmath are maps hjk:ZjZk such that hjkQFj=g:(QSSj,QFj)(QSSk,QFk), and also such that the following diagram is commutativePlanetmathPlanetmathPlanetmath:

ZjfjQSSjhjkgZk@ >fkQSSk
Furthermore, the maps hjk are unique up to the homotopyMathworldPlanetmathPlanetmath rel QFj , and also rel QFk.

Remark 0.2.

Theorem 1 complements other data presented in the parent entry on QAT (http://planetmath.org/QuantumAlgebraicTopology).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 13:10:17