请输入您要查询的字词:

 

单词 DedekindDomain
释义

Dedekind domain


A Dedekind domainMathworldPlanetmath is a commutativePlanetmathPlanetmathPlanetmathPlanetmath integral domainMathworldPlanetmath R for which:

  • Every ideal in R is finitely generatedMathworldPlanetmathPlanetmath.

  • Every nonzero prime idealMathworldPlanetmathPlanetmath is a maximal idealMathworldPlanetmath.

  • The domain R is integrally closedMathworldPlanetmath in its field of fractionsMathworldPlanetmath.

It is worth noting that the second clause above implies that the maximal length of a strictly increasing chain of prime ideals is 1, so the Krull dimension of any Dedekind domain is at most 1. In particular, the affine ring of an algebraic setMathworldPlanetmath is a Dedekind domain if and only if the set is normal, irreduciblePlanetmathPlanetmathPlanetmathPlanetmath, and 1-dimensional.

Every Dedekind domain is a noetherian ringMathworldPlanetmath.

If K is a number field, then 𝒪K, the ring of algebraic integers of K, is a Dedekind domain.

TitleDedekind domain
Canonical nameDedekindDomain
Date of creation2013-03-22 12:36:06
Last modified on2013-03-22 12:36:06
Ownermathcam (2727)
Last modified bymathcam (2727)
Numerical id16
Authormathcam (2727)
Entry typeDefinition
Classificationmsc 11R37
Classificationmsc 11R04
Related topicIntegralClosure
Related topicPruferDomain
Related topicMultiplicationRing
Related topicPrimeIdealFactorizationIsUnique
Related topicEquivalentCharacterizationsOfDedekindDomains
Related topicProofThatADomainIsDedekindIfItsIdealsAreInvertible
Related topicProofThatADomainIsDedekindIfItsIdealsAreProductsOfPrimes
Related topicProofThatADomai
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 5:21:07