请输入您要查询的字词:

 

单词 DefinitionOfVectorSpaceNeedsNoCommutativity
释义

definition of vector space needs no commutativity


In the definition of vector space (http://planetmath.org/VectorSpace) oneusually lists the needed properties of the vectoral additionPlanetmathPlanetmathand the multiplication of vectors by scalars as eight axioms,one of them the commutative law

u+v=v+u.

The latter is however not necessary, because it may be provedto be a consequence of the other seven axioms.  The proof canbe based on the fact that in defining the group (http://planetmath.org/Group),it suffices to postulateMathworldPlanetmath only the existence of a right identityPlanetmathPlanetmathelement and the right inversesMathworldPlanetmath of the elements (see the article“redundancy of two-sidedness in definition of group (http://planetmath.org/RedundancyOfTwoSidednessInDefinitionOfGroup)”).

Now, suppose the validity of the seven other axioms (http://planetmath.org/VectorSpace), but not necessarily the above commutative law ofaddition.  We will show that the commutative law is in force.

We need the identityPlanetmathPlanetmath(-1)v=-v  which is easily justified(we have 0=0v=(1+(-1))v=).  Then we cancalculate as follows:

v+u=(v+u)+0=(v+u)+[-(u+v)+(u+v)]
=[(v+u)+(-(u+v))]+(u+v)=[(v+u)+(-1)(u+v)]+(u+v)
=[(v+u)+((-1)u+(-1)v)]+(u+v)=[((v+u)+(-u))+(-v)]+(u+v)
=[(v+(u+(-u)))+(-v)]+(u+v)=[(v+0)+(-v)]+(u+v)
=[v+(-v)]+(u+v)=0+(u+v)
=u+v

Q.E.D.

This proof by Y. Chemiavsky and A. Mouftakhov isfound in the 2012 March issue of The American MathematicalMonthly.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 10:31:33