Dieudonné theorem on linear preservers of the singular matrices
Let be an arbitrary field. Consider , the vector space of all matrices over . Moreover, let be the full linear group of nonsingular
matrices over .
Theorem 1.
For a linear automorphism the following conditions are equivalent
:
(i),(ii)either , or .
The original proof [D] of the nontrivial implication (i) (ii) is based on the fundamental theorem of projective geometry
.
References
- D J. Dieudonné, Sur une généralisation du groupe orthogonal
à quatre variables, Arch. Math. 1: 282–287 (1949).