请输入您要查询的字词:

 

单词 A25DependentPairTypesSigmatypes
释义

A.2.5 Dependent pair types (Sigma-types)


In §1.6 (http://planetmath.org/16dependentpairtypes), we needed and types in order todefine the introduction and elimination rules for ; as with , contexts allow us to state the rules for independently:{mathparpagebreakable}\\inferrule*[right=Σ-form]Γ ⊢A : 𝒰 _i Γ,x : A ⊢B : 𝒰 _iΓ ⊢∑_(x:A)B : 𝒰 _i\\inferrule*[right=Σ-intro]Γ, x : A ⊢B : 𝒰 _i
Γ ⊢a : A
Γ ⊢b : B[a/x]Γ ⊢(a,b) : ∑_(x:A)B\\inferrule*[right=Σ-elim]Γ, z : ∑_(x:A)B ⊢C : 𝒰 _i
Γ,x : A,y : B ⊢g : C[(x,y)/z]
Γ ⊢p : ∑_(x:A)BΓ ⊢ind_∑_(x:A)B(z.C,x.y.g,p) : C[p/z]\\inferrule*[right=Σ-comp]Γ, z : ∑_(x:A)B ⊢C : 𝒰 _i
Γ, x : A, y : B ⊢g : C[(x,y)/z]

Γ ⊢a’ : A
Γ ⊢b’ : B[a’/x]Γ ⊢ind_∑_(x:A)B(z.C,x.y.g,(a’,b’)) ≡g[a’,b’/x,y] : C[(a’,b’)/z]The expression (x:A)B binds free occurrences of x in B. Furthermore, because𝗂𝗇𝖽(x:A)B has some arguments with free variablesMathworldPlanetmath beyond those in Γ,we bind (following the variable names above) z in C, and x and y in g.These bindings are written as z.C and x.y.g, to indicate the names of the boundvariables.In particular, we treat 𝗂𝗇𝖽(x:A)B as a primitive,two of whose arguments contain binders; this is superficially similar to, butdifferent from, 𝗂𝗇𝖽(x:A)B being a function that takes functions asarguments.

When B does not contain free occurrences of x, we obtain as a special casethe cartesian productMathworldPlanetmath A×B:(x:A)B. We take thisas the definition of the cartesian product.

Notice that we don’t postulateMathworldPlanetmath a judgmental uniqueness principle for Σ-types, eventhough we could have; see PMlinknameCorollary 127sigmatypes#Thmcor1 for a proof of the correspondingpropositional uniqueness principle.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 15:07:39