请输入您要查询的字词:

 

单词 DoubleGroupoidWithConnection
释义

double groupoid with connection


1 Double Groupoid with Connection

1.1 Introduction: Geometrically defined double groupoid with connection

In the setting of a geometrically defined double groupoid with connection, as in [2], (resp. [3]), there is an appropriate notion of geometrically thin square. It was proven in [2],(Theorem 5.2 (resp. [3], Proposition 4)), that in the cases there specifiedgeometrically and algebraically thin squares coincide.

1.2 Basic definitions

1.2.1 Double Groupoids

Definition 1.1.

Generally, the geometry of squares and their compositions lead to a common representation, or definition of a double groupoidPlanetmathPlanetmathPlanetmath in the following form:

𝒟=\\xymatrix@=3pc S \\ar@¡1ex¿ [r] ^s^1 \\ar@¡-1ex¿ [r]_t^1 \\ar@¡1ex¿ [d]^  t_2 \\ar@¡-1ex¿ [d]_s_2 & H \\ar[l]\\ar@¡1ex¿ [d]^ t\\ar@¡-1ex¿ [d]_s
V \\ar[u] \\ar@¡1ex¿ [r] ^s \\ar@¡-1ex¿ [r] _t & M \\ar[l] \\ar[u]
,
(1.1)

where M is a set of ‘points’, H,V are ‘horizontal’ and ‘vertical’ groupoidsPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath, and S is a set of‘squares’ with two compositions.

The laws for a double groupoid are also defined, more generally, for any topological spaceMathworldPlanetmath 𝕋, and make it also describable as a groupoid internal to the category of groupoidsPlanetmathPlanetmath.

Definition 1.2.

A map Φ:|K||L| where K and L are(finite) simplicial complexesMathworldPlanetmath is PWL (piecewise linear) ifthere exist subdivisions of K and L relative to which Φ is simplicial.

1.3 Remarks

We briefly recall here the related concepts involved:

Definition 1.3.

A square u:I2X in a topological space X is thin if thereis a factorisation of u,

u:I2ΦuJupuX,

where Ju is atree and Φu is piecewise linear (PWL, as defined next) on theboundary I2 of I2.

Definition 1.4.

A tree, is defined here as the underlying space |K| of afinite 1-connected 1-dimensional simplicial complex K boundaryI2 of I2.

References

  • 1 Ronald Brown: Topology and Groupoids, BookSurge LLC (2006).
  • 2 Brown, R., and Hardy, J.P.L.:1976, Topological groupoidsPlanetmathPlanetmathPlanetmathPlanetmath I:universal constructions, Math. Nachr., 71: 273–286.
  • 3 Brown, R., Hardie, K., Kamps, H. and T. Porter: 2002, The homotopydouble groupoidPlanetmathPlanetmath of a Hausdorff space.,Theory and pplications of CategoriesMathworldPlanetmath 10, 71–93.
  • 4 Ronald Brown R, P.J. Higgins, and R. Sivera.: Non-AbelianMathworldPlanetmathPlanetmath algebraic topology,(in preparation),(2008).http://www.bangor.ac.uk/ mas010/nonab-t/partI010604.pdf(available here as PDF), http://www.bangor.ac.uk/ mas010/publicfull.htmsee also other available, relevant papers at this website.
  • 5 R. Brown and J.–L. Loday: Homotopical excision, and Hurewicz theorems, for n–cubes of spaces,Proc. London Math. Soc., 54:(3), 176–192,(1987).
  • 6 R. Brown and J.–L. Loday: Van Kampen TheoremsMathworldPlanetmath for diagrams of spaces, Topology, 26: 311–337 (1987).
  • 7 R. Brown and G. H. Mosa: Double algebroids and crossed modules of algebroids, University of Wales–Bangor, Maths(Preprint), 1986.
  • 8 R. Brown and C.B. Spencer: Double groupoids and crossed modules, Cahiers Top. Géom. Diff., 17 (1976), 343–362.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 18:53:10