请输入您要查询的字词:

 

单词 EisensteinCriterionInTermsOfDivisorTheory
释义

Eisenstein criterion in terms of divisor theory


The below theorem generalises Eisenstein criterion of irreducibility from UFD’s to domains with divisor theoryMathworldPlanetmath.

Theorem.

Let  f(x):=a0+a1x++anxn  be a primitive polynomialMathworldPlanetmath over an integral domain 𝒪 with divisor theory (http://planetmath.org/DivisorTheory)  𝒪*𝔇.  If there is a prime divisor  𝔭𝔇  such that

  • 𝔭a0,a1,,an-1,

  • 𝔭an,

  • 𝔭2a0,

then the polynomialMathworldPlanetmathPlanetmathPlanetmath is irreducible.

Proof. Suppose that we have in 𝒪[x] the factorisation

f(x)=(b0+b1x++bsxs)(c0+c1x++ctxt)

with  s>0  and  t>0.  Because the principal divisor (a0), i.e. (b0)(c0) is divisible by the prime divisor 𝔭 and there is a unique factorisation in the monoid 𝔇, 𝔭 must divide (b0) or (c0) but, by 𝔭2(a0), not both of (b0) and (c0); suppose e.g. that𝔭c0.  If 𝔭 would divide all the coefficients cj, then it would divide also the productMathworldPlanetmathPlanetmathPlanetmathbsct=an.  So, there is a certain smallest index k such that  pck.  Accordingly, in the sum b0ck+b1ck-1++bkc0, the prime divisor 𝔭 divides (http://planetmath.org/DivisibilityInRings) every summand except the first (see the definition of divisor theory (http://planetmath.org/DivisorTheory)); therefore it cannot divide the sum.  But the value of the sum is ak which by hypothesisMathworldPlanetmath is divisible by the prime divisor.  This contradictionMathworldPlanetmathPlanetmath shows that the polynomial f(x) is irreducible.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 9:21:06