请输入您要查询的字词:

 

单词 EuclideanSpaceAsAManifold
释义

Euclidean space as a manifold


Let 𝔼n be n-dimensional Euclidean spaceMathworldPlanetmath, and let (𝕍,,) be the corresponding n-dimensionalinner product space of translationPlanetmathPlanetmath isometriesMathworldPlanetmath. Alternatively, we canconsider Euclidean space as an inner product space that has forgottenwhich point is its origin. Forgetting even more information, we havethe structure of 𝔼n as a differential manifold. We can obtain anatlas with just one coordinate chart, a Cartesian coordinate system(x1,,xn) which gives us a bijection between 𝔼n and n. Thetangent bundleMathworldPlanetmath is trivial, with T𝔼n𝔼n×𝕍.Equivalently, every tangent spaceMathworldPlanetmath Tp𝔼n,p𝔼n. is isomorphicto 𝕍.

We can retain a bit more structure, and consider 𝔼n as a RiemannianmanifoldMathworldPlanetmath by equipping it with the metric tensor

g=dx1dx1++dxndxn
=δijdxidxj.

We can also describe g in a coordinate-free fashion as

g(u,v)=u,v,u,v𝕍.

Properties

  1. 1.

    GeodesicsMathworldPlanetmath are straight lines in n.

  2. 2.

    The Christoffel symbolsMathworldPlanetmathPlanetmath vanish identically.

  3. 3.

    The Riemann curvature tensorMathworldPlanetmath vanish identically.

Conversely, we cancharacterize Eucldiean space as a connected, complete Riemannianmanifold with vanishing curvature and trivial fundamental groupPlanetmathPlanetmath.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 0:44:51