请输入您要查询的字词:

 

单词 EveryFiniteDimensionalNormedVectorSpaceIsABanachSpace
释义

every finite dimensional normed vector space is a Banach space


Theorem 1.

Every finite dimensional normed vector spacePlanetmathPlanetmath is a Banach spaceMathworldPlanetmath.

Proof. Suppose (V,) is the normed vector space,and (ei)i=1N is a basis for V.For x=j=1Nλjej, we can then define

x=j=1N|λj|2

whence :V is a norm for V.Sinceall norms on a finite dimensional vector space are equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath (http://planetmath.org/ProofThatAllNormsOnFiniteVectorSpaceAreEquivalent),there is a constant C>0 such that

1CxxCx,xV.

To prove that V is a Banach space, let x1,x2, be a Cauchy sequencePlanetmathPlanetmathin (V,). That is,for all ε>0 there is an M1 such that

xj-xk<ε,for allj,kM.

Let us write each xk in this sequencePlanetmathPlanetmath in the basis (ej)as xk=j=1Nλk,jej for some constantsλk,j.For k,l1 we then have

xk-xl1Cxk-xl
1Cj=1N|λk,j-λl,j|2
1C|λk,j-λl,j|

for all j=1,,N.It follows that(λk,1)k=1,,(λk,N)k=1are Cauchy sequences in . As is completePlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath, these convergePlanetmathPlanetmath tosome complex numbers λ1,,λN.Let x=j=1Nλjej.

For each k=1,2,, we then have

x-xkCx-xk
Cj=1N|λj-λk,j|2.

By taking k it follows that (xj) converges to xV.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 15:40:19