请输入您要查询的字词:

 

单词 ExampleOfContractiveSequence
释义

example of contractive sequence


Define the sequenceMathworldPlanetmatha1,a2,a3,  by

a1:=1,an+1:=5-2an(n=1,2,3,).(1)

We see by inductionMathworldPlanetmath that the radicand in (1) cannot becomenegative; in fact we justify that

1an3(2)

for every n:  It’s clear when n=1. If it is true foran an, it implies that 1<5-2an3, i.e.1<an+13.

As for the convergence of the sequence, which is not monotonic, one could think to show thatit is a Cauchy sequence. Unfortunately, it is almost impossible to directly express andestimate the needed absolute valueMathworldPlanetmathPlanetmathPlanetmath of am-an. Fortunately,the recursive definition (1) allows quite easily to estimate|an-an+1|.  Then it turns out that it’s a question of acontractive sequence, whence it is by the parent entry (http://planetmath.org/ContractiveSequence) aCauchy sequence.

We form the differencePlanetmathPlanetmath

an-an+1=(5-2an-1-5-2an)(5-2an-1+5-2an)5-2an-1+5-2an
=-2(an-1-an)5-2an-1+5-2an

where n>1.  Thus we can estimate its absolute value, byusing (2):

|an-an+1|=2|an-1-an|5-2an-1+5-2an2|an-1-an|5-23+5-23=|an-1-an|5-23

Since 15-23<1, our sequence (1) iscontractive, consequently Cauchy.  Therefore it convergesPlanetmathPlanetmath toa limit A.

We have

A2=(limnan+1)2=limnan+12=limn(5-2an)=5-2A.

From the quadratic equation  A2+2A-5=0  we get the positiveroot A=6-1. I.e.,

limnan=6-1.(3)
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 15:14:03