请输入您要查询的字词:

 

单词 SumOfPowersOfBinomialCoefficients
释义

sum of powers of binomial coefficients


Some results exist on sums of powers of binomial coefficients. Define As as follows:

As(n)=i=0n(ni)s

for s a positive integer and n a nonnegative integer.

For s=1, the binomial theoremMathworldPlanetmath implies that the sum A1(n) is simply 2n.

For s=2, the following result on the sum of the squares of the binomial coefficientsDlmfDlmfMathworldPlanetmath (ni) holds:

A2(n)=i=0n(ni)2=(2nn)

that is, A2(n) is the nth central binomial coefficientMathworldPlanetmath.

Proof:This result follows immediately from the Vandermonde identityMathworldPlanetmath:

(p+qk)=i=0k(pi)(qk-i)

upon choosing p=q=k=n and observing that (nn-i)=(ni).

Expressions for As(n) for larger values of s exist in terms of hypergeometric functionsDlmfDlmfDlmfMathworldPlanetmath.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 19:09:03