请输入您要查询的字词:

 

单词 ExampleOfNondiagonalizableMatrices
释义

example of non-diagonalizable matrices


Some matrices with real entries which are not diagonalizable over are diagonalizable over the complex numbersMathworldPlanetmathPlanetmath .

For instance,

A=(0-110)

has λ2+1 as characteristic polynomialMathworldPlanetmathPlanetmath.This polynomialPlanetmathPlanetmath doesn’t factor over the reals, but over it does. Its roots are λ=±i.

Interpreting the matrix as a linear transformation 22, it has eigenvaluesMathworldPlanetmathPlanetmathPlanetmathPlanetmath i and -i and linearly independentMathworldPlanetmath eigenvectorsMathworldPlanetmathPlanetmathPlanetmath (1,-i), (-i,1). So we can diagonalize A:

A=(0-110)=(1-i-i1)(i00-i)(.5.5i.5i.5)

But there exist real matrices which aren’t diagonalizable even if complex eigenvectors and eigenvalues are allowed.

For example,

B=(0100)

cannot be written as UDU-1 with D diagonal.

In fact, the characteristic polynomial is λ2 and it has only one double root λ=0.However the eigenspaceMathworldPlanetmath corresponding to the 0 (kernel) eigenvalue has dimensionPlanetmathPlanetmath 1.

B(v1v2)=(00)v2=0 and thus the eigenspace is ker(B)=span{(1,0)T}, with only one dimension.

There isn’t a change of basis where B is diagonal.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 8:11:21