请输入您要查询的字词:

 

单词 ExamplesOfTotallyRealFields
释义

examples of totally real fields


Here we present examples of totally real fields, totally imaginaryfields and CM-fields.

Examples:

  1. 1.

    Let K=(d) with d a square-free positive integer. Then

    ΣK={IdK,σ}

    where IdK:K isthe identity map (IdK(k)=k, for all kK),whereas

    σ:K,σ(a+bd)=a-bd

    Since d itfollows that K is a totally real field.

  2. 2.

    Similarly, let K=(d) with d a square-freenegative integer. Then

    ΣK={IdK,σ}

    where IdK:K isthe identity map (IdK(k)=k, for all kK),whereas

    σ:K,σ(a+bd)=a-bd

    Since d andit is not in , it follows that K is a totally imaginaryfield.

  3. 3.

    Let ζn,n3, be a primitive nth root ofunityMathworldPlanetmath and let L=(ζn), a cyclotomic extension. Notethat the only roots of unity that are real are ±1. Ifψ:L is an embedding, thenψ(ζn) must be a conjugatePlanetmathPlanetmathPlanetmath of ζn, i.e. one of

    {ζnaa(/n)×}

    but those are allimaginary. Thus ψ(L). Hence L is a totallyimaginary field.

  4. 4.

    In fact, L as in (3) is a CM-field. Indeed, the maximalreal subfieldMathworldPlanetmath of L is

    F=(ζn+ζn-1)

    Noticethat the minimal polynomialPlanetmathPlanetmath of ζn over F is

    X2-(ζn+ζn-1)X+1

    so we obtain L from F by adjoining the square root of thediscriminantMathworldPlanetmathPlanetmathPlanetmath of this polynomialMathworldPlanetmathPlanetmathPlanetmath which is

    ζn2+ζn-2-2=2cos(4πn)-2<0

    and any other conjugate is

    ζn2a+ζn-2a-2=2cos(4aπn)-2<0,a(/n)×

    Hence, L is a CM-field.

  5. 5.

    Notice that any quadratic imaginary number field isobviously a CM-field.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 21:25:27