请输入您要查询的字词:

 

单词 ExistenceOfMaximalSubgroups
释义

existence of maximal subgroups


Because every finite groupMathworldPlanetmath is a finite setMathworldPlanetmath, every chain of proper subgroupsMathworldPlanetmathof a finite group has a maximal elementMathworldPlanetmath and thus every finite group hasa maximal subgroup. The same applies to maximal normal subgroups.

However, there are infinite groups, even abelianMathworldPlanetmath, with no maximal subgroups andno maximal normal subgroups. The Prüfer group

p=limpi

(for any prime p) is an example of an abelian group with no maximal subgroups.As the group is abelian all subgroupsMathworldPlanetmathPlanetmath are normal so it also has no maximalnormal subgroups. Such groups fail to fit the hypothesisMathworldPlanetmath of the Jordan-Hölder decomposition theorem as they do not have the ascending chain conditionMathworldPlanetmathPlanetmathPlanetmath and so we cannot assign a composition seriesMathworldPlanetmathPlanetmathPlanetmath to such groups.

This stands in contrast to the categoryMathworldPlanetmath of unital rings where if one assumes Zorn’s lemma (axiom of choiceMathworldPlanetmath) then one may prove every unital ringhas a maximal idealMathworldPlanetmathPlanetmath.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 3:52:52