请输入您要查询的字词:

 

单词 FindingAnotherParticularSolutionOfLinearODE
释义

finding another particular solution of linear ODE


Consider thehomogeneousPlanetmathPlanetmathPlanetmathPlanetmath (http://planetmath.org/HomogeneousLinearDifferentialEquation)second-order linear ordinary differential equationMathworldPlanetmath

y′′+P(x)y+Q(x)y= 0.(1)

If one knows oneparticular solution (http://planetmath.org/SolutionsOfOrdinaryDifferentialEquation) y=y1(x)0  of (1), it’s possible to derivefrom it via two quadratures another solution  y2(x), linearly independentMathworldPlanetmath on  y1(x);  thus one can write thegeneral solution

y=C1y1(x)+C2y2(x)

of that homogeneous differential equation.

We will now show the derivation procedure.

We put

y=uv(2)

which renders (1) to

(v′′+Pv+Qv)u+(2v+Pv)u+u′′v= 0.(3)

Here one can choose  v:=y1(x), whence the first addendvanishes, and (3) gets the form

(2y1+Py1)u+y1u′′= 0.(4)

This equation may be written as  u′′u=-2y1y1-P, which is integrated to

ln|dudx|=ln1y12-P𝑑x+constant,

i.e.

dudx=Cy12e-P𝑑x.

A new integration results from this the general solution of (4):

u=Ce-P𝑑xy12𝑑x+C.

Thus by (2), we have obtained the wanted other solution

y2(x)=y1(x)e-P𝑑xy12𝑑x

which is clearly linearly independent on y_1(x).

Consequently, we can express the general solution of thedifferential equation (1) as

y=y1(x)u=C1y1(x)+C2y1(x)e-P𝑑xy12𝑑x,

where C1 and C2 are arbitrary constants.

Remark.  The substitution

y:=e-12P(x)𝑑xu

converts the equation (1) into the form

d2udx2+(Q-P24-P2)u= 0

not containing the derivativePlanetmathPlanetmath dudx.

References

  • 1 Ernst Lindelöf: Differentiali- ja integralilaskuja sen sovellutukset III.1.  Mercatorin Kirjapaino Osakeyhtiö, Helsinki (1935).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 22:47:55