generalization of the parallelogram lawTheorem.In an inner product space (http://planetmath.org/InnerProductSpace), let x,y,z be vectors. Then∥x+y∥2+∥y+z∥2+∥z+x∥2=∥x∥2+∥y∥2+∥z∥2+∥x+y+z∥2.Taking x+z=0 we have the usual parallelogram law.